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Preface

In this thesis, image analysis and computer vision has been used to assist in real-
world problems. The problems that are studied in the thesis differs a lot, but in
all cases image analysis can be used to either reduce the amount of manually work
or to increase accuracy.

The work in this thesis is based on the following papers:

• Hanna Källén, Håkan Ardö and Olof Enqvist,“Tracking and Reconstruc-
tion of Vehicles for Accurate Position Estimation", IEEE Workshop on Ap-
plications of Computer Vision (WACV), Hawaii, 2011.

• Hanna Källén, Anders Heyden, Kalle Åström and Per Lindh, “Measure-
ment of Bitumen Coverage of Stones for Road Building, Based on Dig-
ital Image Analysis”, IEEE Workshop on Applications of Computer Vision
(WACV), Breckenridge, 2012.

• Hanna Källén, Anders Heyden and Per Lindh, “Measuring Bitumen Cov-
erage of Stones using a Turntable and Specular Reflections”, International
Conference on Computer Vision Theory and Applications (VISAPP), Barcelona,
2013.

• Hanna Källén, Anders Heyden and Per Lindh, “Estimation of Grain Size in
Asphalt Samples using Digital Image Analysis”, Conference on Applications
of Digital Image Processing XXXVII, San Diego, 2014.

• Hanna Källén, Jesper Molin, Anders Heyden, Claes Lundström and Kalle
Åström, “Towards Grading Gleason Score using Generically Trained Deep
Convolutional Neural Networks”, Accepted to IEEE International Sympo-
sium on Biomedical Imaging (ISBI), Prague, 2016.
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• Hanna Källén, Anders Heyden, Kalle Åström and Per Lindh, “Measuring
and Evaluating Bitumen Coverage of Stones using two Different Digital
Image Analysis Methods”, Measurement, 2016.
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Chapter 1

Introduction

During the last decades, image analysis has become an important tool in various
applications. The increase in computer power has led to that more advances al-
gorithms can be developed. In this thesis image analysis has been used in three
different applications; quality control of asphalt, cancer detection in histopatho-
logical images and traffic surveillance.

In the first part of the thesis image analysis has been used to assist researchers
at asphalt laboratories. Asphalt consists of a mixture of stones of different sizes
and a binder called bitumen. Mainly two problems have been studied; the affinity
between stones and bitumen and grain size distribution in asphalt samples. The
affinity between bitumen and stone is very important for the durability of the
pavement and is traditionally measured by the rolling bottle test. First stones are
covered in bitumen, then they are put in a glass bottle that is put on a bottle rolling
machine. The rolling causes some of the bitumen to get teared of, the more that
is left the better. Today the degree of bitumen coverage is estimated manually by
a few laboratory assistant and the results often differ between different laboratory
assistants and different laboratories. A goal in this thesis is to replace the manual
evaluation in the method by automatic image analysis to make this test more
accurate and objective. It is a quite easy problem to solve when the color difference
between the stones and the black bitumen is fairly clear, but when the stones are
very dark it is difficult to see any difference between stones and bitumen.

Another quality control is to estimate the size distribution of stones in asphalt
samples to see if it follows the recipe for the asphalt. This is done today by
dissolving the sample in highly toxic substances. Then the size distribution is
estimated by measure the percentage of stones that passes a certain sieve size. To
avoid toxic substances, as preferred by the European Union, we have analysed
cross section of the samples with image analysis to estimate the size distribution.

In the second part, histopathological images have been studied. The patholo-
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Chapter 1. Introduction

gist have to analyze a large amount of prostatic biopsies. In the biopsies, cancerous
tissue has to be separated from benign tissue. Also the cancerous tissue is sepa-
rated into three different grades of cancer. This is very time-consuming and a goal
in this thesis is to assist the pathologist in their diagnostics by giving a suggestion
of segmentation that the pathologist can verify or adjust. For this, features from
pre-trained deep neural networks have been used to classify the images. These
features were used to train classifiers to classify the image into the four different
classed.

The third and last part of the thesis deals with tracking and 3D-reconstruction
of vehicles. To measure how safe certain roads and intersections are one can
predict the number of accidents that will happen by observing certain events,
conflicts, during a short time period. This is done by letting trained personnel
study video of the intersection, which is time-consuming and expensive. In this
thesis, 3D-reconstructions of vehicles have been done from videos, with the 3D-
models it is possible to accurate estimate positions of the vehicles. A system to
track interesting points between images in a movie sequence and then sort out
which points that belong to which vehicle has been developed. These points are
then used to estimate camera orientations and to build models of the vehicles.
Also the vehicles pose has been estimated in all frames, to get their positions. The
positions could then be used to detect conflicts in the intersection.

Thesis Overview

The thesis has been split into three different parts. The first part concerns ap-
plications of image analysis in asphalt research, to assist in the laboratory work
performed in the laboratories. The second part is about finding cancerous tis-
sue in pathological images. The third part concerns traffic surveillance and 3D-
reconstructions of vehicles.

Chapter 2 This chapter provides an introduction to segmentation of images,
and present some of the most common segmentation algorithms.

Chapter 3 Asphalt consists of a mixture of stones of different size and a binder
called bitumen. This chapter describes a method to automatically estimate the
degree of bitumen coverage of stones that are partly covered in bitumen. This is
an important test to ensure that the pavement last as long as possible.

2



Chapter 4 When asphalt is produced, the size distribution of the stones are
defined by a recipe for the asphalt. Another important quality control is to esti-
mate the size distribution of stones in asphalt samples, and compare this with the
recipe. This chapter provides an algorithm for analyzing slices of asphalt by image
analysis.

Chapter 5 This chapter provides theoretical background to some important
machine learning techniques, that are used in the following chapter.

Chapter 6 In this chapter a system to automatically classify microscopy images
of prostatic tissue into different grades of cancer is presented.

Chapter 7 This chapter derives the camera model that is used to project points
in space to an image. Also an algorithm to track a point in an image sequence is
described.

Chapter 8 A system that builds 3D models of vehicles in an intersection using
a video of the intersection is presented. These models can be used to estimate the
position of the vehicles in the intersection for every frame in the video.

Author Contributions

The per-paper contributions of the author are as follows:

• Hanna Källén, Håkan Ardö and Olof Enqvist,“Tracking and Reconstruc-
tion of Vehicles for Accurate Position Estimation", IEEE Workshop on Ap-
plications of Computer Vision (WACV), Hawaii, 2011.

I implemented the algorithms, performed all experiments and wrote the
paper with help from Olof.

• Hanna Källén, Anders Heyden, Kalle Åström and Per Lindh, “Measure-
ment of Bitumen Coverage of Stones for Road Building, Based on Dig-
ital Image Analysis”, IEEE Workshop on Applications of Computer Vision
(WACV), Breckenridge, 2012.

The idea to use image analysis to assist in the laboratory work came from
Per. He also developed the setup for the experiments and provided the
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images. Kalle and I developed the method together, I did most of the
coding and wrote most of the paper.

• Hanna Källén, Anders Heyden and Per Lindh, “Measuring Bitumen Cov-
erage of Stones using a Turntable and Specular Reflections”, International
Conference on Computer Vision Theory and Applications (VISAPP), Barcelona,
2013.

The idea to use a turntable to achieve specular reflection in the bitumen
came from me. I was also involved in photographing the stones and wrote
all the code and most of the paper.

• Hanna Källén, Anders Heyden and Per Lindh, “Estimation of Grain Size in
Asphalt Samples using Digital Image Analysis”, Conference on Applications
of Digital Image Processing XXXVII, San Diego, 2014.

The idea to use image analysis to analyze the grain size estimation came
from Per. I implemented the fast marching algorithm with some input
from Anders, and the rest of the image analysis algorithms myself. I also
wrote the paper, apart from a small part in the introduction.

• Hanna Källén, Jesper Molin, Anders Heyden, Claes Lundström and Kalle
Åström, “Towards Grading Gleason Score using Generically Trained Deep
Convolutional Neural Networks”, Accepted to IEEE International Sympo-
sium on Biomedical Imaging (ISBI), Prague, 2016.

Kalle came up with the idea to use generically trained networks to classify
prostatic tissue. I performed the experiments and wrote most of the paper
with help from Jesper.

• Hanna Källén, Anders Heyden, Kalle Åström and Per Lindh, “Measuring
and Evaluating Bitumen Coverage of Stones using two Different Digital
Image Analysis Methods”, Measurement, 2016.

This is a continuation on the papers presented at WACV 2012 and VISAPP
2013. I came up with the idea to use the results in WACV to evaluate a
modified version of the method in VISAPP. I performed all experiments,
did all the coding and wrote the paper with some input from Kalle and
Anders.
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Quality Control





Chapter 2

Preliminaries on Segmentation

A common problem in image analysis and in this thesis is segmentation of im-
ages. With segmentation we mean to separate the image into different regions, or
segments, where pixels within a region belong to the same object or are similar
in some other way. Since segmentation is a very common problem there exists
a large number of different segmentation techniques. Most of the methods deal
with the two class problem of foreground and background segmentation, where
the interesting part of the image is in the foreground and the not so interesting
part in the background. In this chapter, three different segmentation methods
will be presented; the very basic thresholding, segmentation by graph-cuts and
fast marching. Some morphological operations to manipulate the segments will
also be presented.

2.1 Morphology

Morphological operations [31] are used to shrink or expand shapes or to smoothen
the boundaries of an object. Some of the most common operations are erosion,
dilation, opening and closing.

Morphological operations are often used on binary images but could also be
extended to gray scale images. In this brief introduction, only morphological
operation on binary images will be discussed. All the morphological operations
are performed with two sets, one of them is the image and the other one is a small
set called structuring element. The structuring element could for example be a
square, a cross or a disc.
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Chapter 2. Preliminaries on Segmentation

2.1.1 Erosion and Dilation

Erosion is used to shrink objects by removing elements at, or close to, the bound-
ary. It is defined by

A B = {x 2 X|x+ b 2 A for every b 2 B}, (2.1)

where A is the object and B a symmetric structuring element. Here X is the
whole image.

Dilation is the opposite of erosion and used to expand the object by adding
elements close to the boundary. Dilation is defined as

A�B = {x 2 X|x = a+ b for some a 2 A and b 2 B}. (2.2)

Figure 2.1 shows an example of erosion and dilation on the object seen in Fig-
ure 2.1a. The structuring element used in both the erosion and dilation is in this
case is a 3⇥ 3 square. The image after erosion can be seen in Figure 2.1b and the
image after dilation in Figure 2.1c.

(a) Original image. (b) After erosion. (c) After dilation.

Figure 2.1: Erosion and dilation performed with the same structuring element
on the same object.

2.1.2 Opening and Closing

The opening of a set is defined as erosion with a structuring element followed by
dilation with the same structuring element on the resulting object. The closing is
the opposite, dilation followed by erosion. Both opening and closing will cause
some smoothing of the contour of the object. The opening will remove small
out-sticking elements and remove small islands but will not affect deep valleys.

8



2.1. Morphology

Closing affects the valleys and fills small holes but will not affect out-sticking
objects.

Figure 2.2 shows opening and closing with the same square structuring ele-
ment on the image shown in Figure 2.2a. The opening can be seen in Figure 2.2b
and the closing in Figure 2.2c.

(a) Original image. (b) After opening. (c) After closing.

Figure 2.2: Opening and Closing performed on the same object.
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Chapter 2. Preliminaries on Segmentation

2.2 Thresholding

A simple way to segment an image into foreground and background is by thresh-
olding the image. The most common way is to convert the image into a grayscale
image and threshold on the intensities. Pixels with intensities below the threshold
are labeled as background and pixels above the threshold are labeled as foreground
or vice versa. It is also possible to threshold on some other property in the image,
such as color difference. Thresholding works well in those cases where there is a
clear intensity or color difference between the foreground and background, but it
is very sensitive for the threshold chosen.

Figure 2.3 shows segmentation of a grayscale image with three different thresh-
olds. The original image is seen in Figure 2.3a, the threshold in Figure 2.3b is too
low and does not give any satisfying segmentation of the image. The threshold in
Figure 2.3d is chosen too high while the threshold in Figure 2.3c is a good choice
of threshold.

(a) Original image. (b) Threshold 60.

(c) Threshold 90. (d) Threshold 140.

Figure 2.3: Segmentation of an image with three different thresholds.
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2.3. Graph-Cuts

2.3 Graph-Cuts

With thresholding, the spatial information of the pixels are not used, two pixels
close to each other are equally likely to be assigned to the same class as two pixels
far away from each other. In many cases, this spatial information may be more
important than pixel values. One widely used segmentation algorithm that uses
both pixel values and spatial information is graph-cuts [11, 12, 49]. The idea is
to express the problem in terms of minimizing an energy function. This function
is represented by a graph, where nodes are the variables with edges between them.
Minimizing the function will be the same as calculating the maximum flow in
the graph if all weights on the edges are non-negative, which there are many
algorithms for.

We want to find labels, fp, for all pixels, p, in the best possible way. These
labels are in this case foreground or background. We want to do this in a way that
pixels close to each other are more likely to be assigned to the same label. The
solution to this problem is to minimize an energy function consisting of a data
part and a regularization part, on the form

E(f) =
X

i2P
Di(fi)

| {z }
data part

+

X

i,j2N
wij(fi, fj)

| {z }
regularization part

, (2.3)

where Di is a term that typically measures how well label fi fit the data and P
is the set of all pixels. The term wij describes how hard we should punish if two
neighboring pixels have different labels and the set N is the set of all interacting
pixels, neighbors. The terms wij can either be set individually for each pair of
pixels or to a constant, same for all pairs.

An illustration of the graph-cut method is shown in Figure 2.4. Figure 2.4a
shows a small image of 3 ⇥ 4 pixels. The corresponding graph can be seen in
Figure 2.4b. The pixels are connected in a 8-neighborhood, meaning that pixels
not at the border has 8 neighbors. The nodes in the graph correspond to the
pixels in the image and they are connected to their neighbors by the edges shown
in the illustration. Every edge has a weight associated, denoted by wij , which is
the weight between pixel i and pixel j.

Then all nodes are connected to a foreground and background node called
source, S, and sink, T . This can be seen in Figure 2.4c. The weight of the edge

11



Chapter 2. Preliminaries on Segmentation

(a) Original image.

w

w w
w

w
w

(b) Corresponding graph.

wS

wT

S

T
(c) Foreground and background node.

S

T
(d) Separated graph.

Figure 2.4: Illustration of a graph.

from the foreground node, S, to pixel i is denoted by wSi and usually depends
on the intensity difference between the foreground node and the pixel. In the
same way the weight for the edge between the background node and a pixel is
denoted wT i. Those will correspond to the term Di in Equation 2.3. Then
an optimization algorithm is used to find the best possible cut, meaning the cut
where the total cost is as low as possible. The cut must be done in such a way
that all pixels in the end have an edge to either the foreground or the background
node, not both, as illustrated in Figure 2.4d. There cannot exist any edges from
one side of the graph to the other. The cost for cutting one edge depends on the
weight, high weight means high cost, and the total cost is the sum of the weight
for all edges that must be cut. Figure 2.4d shows the separated graph with the

12



2.3. Graph-Cuts

cut marked with a black line. The pixels that afterwards are connected to the
foreground node are classified as foreground and the others as background.

2.3.1 Segmentation of an Image using Graph-Cut

Figure 2.5 shows an example of a segmentation done by graph-cuts for three
different values on the regularization term. The weights between the pixels are set
to a constant, different in the different images, and the weights to the foreground
and background nodes are set to be the intensity difference between the pixel and
the foreground and background node respectively. The original image can be seen
in Figure 2.5a and the result of the segmentation can be seen in Figures 2.5b, 2.5c
and 2.5d.

(a) Original image. (b) Regularization 10.

(c) Regularization 25. (d) Regularization 100.

Figure 2.5: Segmentation of an image by the graph-cut method with three dif-
ferent regularization terms. The red lines show the border between foreground
and background.

13



Chapter 2. Preliminaries on Segmentation

2.4 Fast Marching

The fast marching algorithm was presented by James A. Sethian in [79] and [80].
It is a numerical technique that follows the evolution of an interface. Figure 2.6
shows such an interface expanding in the directions of the arrows.

F
F

F

F

F

F
F

F

Figure 2.6: An interface expanding in the direction of the arrows.

In the fast marching method, we start with some initial boundary and let this
curve expand according to some speed function, F . Which speed function to
use depends on the application but it is always positive so that the interface only
can expand and not shrink. In this thesis we will use the fast marching method
for segmenting images and therefore we will start the curve somewhere where
we are certain it is background and let the curve propagate from this. After a
while we will stop the propagation and let the pixels inside the interface be set to
background and the pixels that have not been reached by the curve to foreground.
It is also possible to start in the foreground and expand towards background.

2.4.1 The Propagation Equation

The goal for the algorithm is to compute how the curve propagates and at what
time the curve reaches all points. The time when the curve reach a point is called
the arrival time of the point, denoted by T (x), where x is the point. Consider the
curve and the point x outside the curve in Figure 2.7. We start by assuming that

14



2.4. Fast Marching

the curve only moves in one dimension and that T and F are one-dimensional
functions.

x

Figure 2.7: An interface that will reach the point outside denoted by x at time
t.

The time when the curve reach the point x is denoted by t. By definition this
is the arrival time, T (x), for the point. This gives us

t = T (x), (2.4)

if we take the derivative with respect to t we get

1 =

dT

dt
=

dT

dx

dx

dt
, (2.5)

where dx
dt is nothing else than the speed of the interface at point x, which is F .

Using this we can write (2.5) as

1 = F
dT

dx
. (2.6)

In multiple dimensions this becomes the Eikonal equation

|rT |F = 1, (2.7)

where T is the arrival time for the curve and F is the speed function for the curve.

2.4.2 Algorithm

To numerically solve the Eikonal equation, we discretize the space by a finite grid,
in the case of images it is already discretized and the grid points are the pixels.
The grid points are then put in one of the following classes: Known, Trial or

15
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Far. Known consists of the grid points on the boundary of the interface or points
already passed by the curve. These points have already been assigned with an
arrival time. Trial consists of the points that are neighbors to the boundary and
not in Known. For these points a temporary arrival time can be computed, and
the points are also put in a min-heap to easily and efficiently find the element
with the smallest arrival time. Far consists of all other points.

The min-heap is a data structure, a tree, organized in a way that the top
element is always the smallest one. In this case the smallest means that it has the
smallest arrival time. This makes it very efficient to find the smallest arrival time
without having to search through all elements.

In each step in the algorithm, the point with the smallest arrival time is cho-
sen, this point is added to Known and removed from Trial. For neighbors to
the points that are in Far, a temporary arrival time is computed and the point is
added to Trial. For neighbors in Trial, the temporary arrival times are updated.
This continues until all points are investigated or when the smallest of the tem-
porary arrival times reaches some threshold.

Fast Marching Algorithm
1. Initialize, add the points at the initial boundary to Known,

calculate the temporary arrival time for the neighbors, not
in Known, according to Section 2.4.3, add them to Trial
and to the heap.

2. Take out the first element from the heap which is the
point with the smallest arrival time, add it to Known and
remove it from Trial.

3. For all neighbors not in Known: update arrival time ac-
cording to Section 2.4.3, add the ones not already in Trial
to Trial and to the heap.
While updating the arrival times, also update the heap.

4. Repeat 2-3 until the heap is empty or until the smallest of
the arrival times is larger than some threshold.

16



2.4. Fast Marching

2.4.3 Updating the Arrival Times

To find the arrival function we want to find a solution for the Eikonal equation
derived earlier

|rT |F = 1.

We solve this differential equation numerically by using the following updat-
ing scheme

 
max(D�x

ij T, 0)2
+min(D+x

ij T, 0)2

+max(D�y
ij T, 0)2

+min(�D+y
ij T, 0)2

!1/2

=

1
Fij

, (2.8)

where Fij is the speed at the point (i, j), D�x
ij is the one sided derivative in the

negative x-direction defined by D�x
ij =

T (x)�T (x�h)
h . In the same way D+x

ij is

the one sided derivative in the positive x-direction defined by D+x
ij =

T (x+h)�T (x)
h .

D�y
ij and D+y

ij are defined in the same way.
If we use a slightly different approximation of the gradient, introduced in [76],

we get the more convenient upwind scheme

 
max(D�x

ij T,�D+x
ij T, 0)2

+max(D�y
ij T,�D+y

ij T, 0)2

!1/2

=

1
Fij

. (2.9)

In this thesis, we will use the fast marching algorithm for segmenting images.
In this case the grid points are the pixels in the images and the derivatives can
be computed more easily. If we call the arrival time we want to calculate T and
the arrival times for the neighbors as shown in Figure 2.8, we can calculate the
derivatives as

D�x
ij T = T � a,

D+x
ij T = b� T,

D�y
ij T = T � c,

D+y
ij T = d� T,

(2.10)

where a, b, c and d are the arrival times for the neighbors of the interesting pixel.
If we assume that the arrival times a and b are both known we can have one

of the following cases:

• Both a and b are smaller than T , T > a, T > b
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Chapter 2. Preliminaries on Segmentation

Ta b

c

d

Figure 2.8: The arrival times for the current grid point and its neighbors. The
arrival time we want to update is denoted by T and the arrival times for the
neighbors are denoted a, b, c and d.

• a is smaller than T but b is larger, T > a, T  b

• b is smaller than T but a is larger, T  a, T > b

• Both a and b are larger than T , T  a, T  b.

For the first case we get

max(T � a,�(b� T ), 0) = max(T � a, T � b, 0) = T �min(a, b).

For the second case we get

max(T � a, T � b, 0) = T � a,

but since we also know that b > a this will be the same thing as writing

max(T � a, T � b, 0) = T �min(a, b).

The same thing applies for the third case. For the last case we get

max(T � a, T � b, 0) = 0.

Then we can reduce the four cases above to just two. In similar way we get
two cases when c and d are known.

The equation in (2.9) will look different depending on the size of T . There-
fore we have to solve it for the three following cases:
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• T > min(a, b) and T > min(c, d)

• T > min(a, b) and T  min(c, d)

• T  min(a, b) and T > min(c, d).

The fourth case T  min(a, b) and T  min(c, d) can never occur since T has
to always increase and therefore has to be larger than the arrival time for at least
one of its neighbors. Which one to use is not known in advance since T is not
known.

In the first case when T > min(a, b) and T > min(c, d) we get

max(T � a, T � b, 0)2
+max(T � c, T � d, 0)2

= (T �min(a, b))2
+ (T �min(c, d))2

= 2T 2 � 2(min(a, b) + min(c, d))T +min(a, b)2
+min(c, d)2.

And we can rewrite (2.9) as

T 2 � (min(a, b) + min(c, d))T +

1
2

✓
min(a, b)2

+min(c, d)2
+

1
F 2

◆
.

(2.11)

This is a quadratic equation with two solutions and we choose the larger of the
two. The solution will be real as long as |min(a, b) �min(c, d)| �

p
2

F . If this
does not hold it is not a valid solution and we ignore this case.

For the second case when T > min(a, b) and T  min(c, d) we instead get

max(T � a, T � b, 0)2
+max(T � c, T � d, 0)2

= (T �min(a, b))2
+ 0,

and we can rewrite (2.9) to

T =

1
F

+min(a, b). (2.12)

In the third case we get in the same way

T =

1
F

+min(c, d). (2.13)

These three cases will yield three different arrival times for the pixel. We are
interested in the largest possible solution. For the first case the arrival time must
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satisfy T > min(a, b) and T > min(c, d). If it does not, we are not in the first
case anymore and the arrival times need to be computed according to the other
cases.

Since F is always greater than zero it is enough to just look at one of the cases
two and three. If we choose T =

1
F + max(min(a, b),min(c, d)) the arrival

time will automatically be greater than both min(a, b) and min(c, d), violating
the constraints.

By this we can reduce the two latter cases to one, namely

T =

1
F

+min(a, b, c, d). (2.14)

We can only have two possible outcomes for the solution of this equation, either
T is between min(a, b) and min(c, d) or greater than both, in the latter case the
constrains are violate and the arrival time must be calculated according to (2.11).

In the end we just have to calculate the arrival times according to (2.11). If
the solution gets real and it does not violate the constraints this will be the largest
of the solutions. Otherwise we calculate the arrival times according to (2.14).

Usually the arrival times for all the neighbors are not known, but this will
not make any substantial difference in the calculations. If we know one of a and
b we just set min(a, b) to the one we know. In the same way we set min(c, d)
to the one we know of c and d. Setting this we can calculate the arrival times
exactly as before. If we do not know any of a and b we have to know at least one
of c and d, in this case we calculate the arrival time according to (2.14) setting
min(a, b, c, d) = min(c, d).

2.4.4 Segmentation of an Image using Fast Marching

Figure 2.9 shows an example when fast marching was used to segment an image
into foreground and background. The original image can be seen in Figure 2.9a.
This image is then transformed to a speed image shown in Figure 2.9b where
white means high value and black low. The speed function has to be chosen
depending on the application. In this case we have a dark background and a
bright foreground so we choose a speed function that will give high values for
dark pixels and low values for brighter pixels. The speed function is given by

F (x, y) =
1

1 + eI(x,y)/v
, (2.15)
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where I(x, y) is the intensity of the given point and v determine the steepness of
the function.

(a) Original image. (b) Speed function.

(c) Arrival times. (d) Segmentation.

Figure 2.9: Segmentation of an image using the fast marching method.

Then we initialize the fast marching to start at the edges of the image expand-
ing inwards to the center. The arrival times can be seen in Figure 2.9c, blue means
small arrival times and red and yellow color means larger arrival times. We get the
final segmentation shown in Figure 2.9d by thresholding on the arrival times with
some suitable threshold. The red line shows the border between foreground and
background.
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Chapter 3

Improving the Rolling Bottle
Test

Asphalt or asphalt concrete is the most used pavement for paved roads all over
the world and is made of a mixture of stones and a petroleum-based material
called bitumen. The bitumen works as a glue and makes the stones stick together.
In order to prevent that stones at the surface get loose, the affinity between the
stones and the bitumen needs to be as good as possible. If stones start to detach
from the pavement, it will eventually have to be repaired or redone and this is a
very expensive process. One way to investigate the affinity is by the rolling bottle
method.

3.1 Rolling Bottle Method

The rolling bottle method, [2], is a fast and simple way to investigate the affinity
between stones and bitumen. First the stones are heated and completely covered
in hot bitumen, and the stones are put to rest for a while. Then the bitumen cov-
ered stones and a glass rod are put in a glass bottle that is filled with distilled water.
The water has a temperature of 5°C to prevent that the stones stick together.

The bottle with the stones is then put on a bottle rolling machine like the one
shown in Figure 3.1. When rolling the bottle some of the bitumen will get teared
off the stones, the glass rod in the bottle will prevent the stones from sticking
together.

After rolling for six hours the degree of bitumen coverage is estimated. This
is usually done using manual inspection, where laboratory assistants compare the
stones to reference images with known bitumen coverage. There are also written
guidelines to assist in this manual estimation. Usually this is done independently
by two different observers.
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Figure 3.1: A bottle rolling machine.

When the degree of bitumen coverage is estimated, the bottle with the stones
are put back on the machine to roll for some more hours before the degree of
bitumen coverage is estimated again. This is repeated a few times to see how the
degree of bitumen coverage is changing with rolling time.

The main drawback with this method as it is done today is that the estimation
of the degree of bitumen coverage is made manually by visually inspecting a small
number of stones. This is a very difficult estimation problem. The result will
often differ a lot between different observers and laboratories. Therefore it would
be very useful to have a computer system to analyze the stones. This will make the
method less subjective since the same computer program can be used in different
laboratories.

3.2 Previous Work

In [64], an algorithm for trying to estimate the degree of bitumen coverage using
image analysis has been developed. In the proposed method, a cyan-colored back-
ground for easy segmentation of the background has been used. To avoid sparkles
and reflections in the image a cyan-colored truncated cone, with the camera in
one of the bases, is used. To classify pixels either as stones or bitumen, a princi-
pal component analysis was implemented. Using the first component the images
were thresholded and pixels below the threshold were classified as bitumen. In the
paper, no evaluation of the method were performed and it is not possible to see
how well it performs.

A more advanced method for estimating the degree of bitumen coverage was
suggested in [85]. To avoid reflections in the bitumen surface, the stones are put
in a crystallization dish where they were covered with distilled water. A plastic
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cylinder was put around the aggregates and illuminated from outside to ensure
diffuse lighting to prevent shadows to occur. A probability based segmentation
method was used for segmenting the images. To train parameters in the classifier,
reference images on the background, the raw aggregates and aggregates completely
covered in bitumen were used.

A somewhat similar method was proposed in [52]. Like in the previous men-
tioned article the bitumen covered stones were put on a plate filled with de-ionized
water, which was placed on a green background. Pictures were taken with a cam-
era straight above the stones and the images were transformed to the YUV color
space. Then the background was removed from the images by thresholding in
the different channels in the YUV color space. The same approach was used to
segment bitumen from stone. These two methods use very specific experimental
setup and it could be difficult to reproduce the experiments in different laborato-
ries.

Another method to estimate the degree of bitumen coverage was proposed by
us in [45]. In this method we used series of images of stones, where the images
in the series have different exposure times. Two reference series were used to get
information of how a typical bitumen or stone pixel looks like. The pixels in the
reference images were clustered so that a stone pixel is represented by some cluster
centers and a bitumen pixel is represented with some other cluster centers. To
estimate the degree of bitumen coverage in a series of images with partly covered
stones, the images was segmented using a graph-cut method. The weights in
the graph from a pixel to the foreground and background node depend on the
distance to the closest bitumen and stone clusters. This is almost the same as
using the minus log likelihood using a Gaussian Mixture Model, [62].

All the above methods rely on some color difference between the stone ma-
terial and the bitumen. These methods are not suitable when analyzing darker
stones, where the color difference is very small. There has also been a few at-
tempts, [47, 66], to develop methods that do not depend on the color of the
stones.

In [66], a different approach, based on the differences in the surface charac-
teristics in bitumen and stone, is used. Bitumen and stone reflect light in differ-
ent ways. In stone, diffuse reflection occurs and in bitumen specular reflection
dominates. In the article, the stones have been scanned with two line lasers, per-
pendicular to each other. The idea is that the light that hits the stone surfaces
is scattered away in all directions, where some rays will reach the camera. If the
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light hits a bitumen surface then all light is reflected away in the same direction,
away from the camera. This results in an image with very low intensities where it
is bitumen and higher intensities where it is stone. While scanning with the lasers
one gets a series of images, these images are then combined to a single gray scale
image. By looking at the histogram of this image the authors claim that they can
distinguish between bitumen, stone and background. The authors also claim that
the color of the stones are of no significance for this method, but only one color
has been tested in the article and there is no evaluation of the result. Using lasers
as light source is also an expensive solution and it might not be useful for many
laboratories.

Another method that uses specularities in the bitumen was presented by us in
[47]. To get as much specularities in the bitumen covered part of the stones as
possible, the stones were placed on a turntable that was illuminated from one side
with natural light. By turning the turntable a little between images different sides
of the stones were illuminated. After that all images are registered to each other,
the difference of the highest and the lowest intensity is measured for all pixels.
Two reference series, one of stones without bitumen and one completely covered
in bitumen, are used to build histograms over the differences. The histograms are
then used to create a probability function that tells what the probability is that a
pixel is bitumen given the intensity difference for the pixel. The degree of bitumen
coverage is estimated by summarizing these probabilities for all foreground pixels
and dividing it by the total number of foreground pixels.

3.2.1 Contributions

This chapter is mainly based on the work in our article [46]. The goal is to find a
method that works just as good on dark stones as it does on brighter stones. It is
very difficult even for an experienced human to manually estimate the degree of
bitumen coverage, especially on darker stones, and different laboratory assistants
often get different answers. This makes it very hard to get any reliable ground
truth.

The proposed method in this chapter is a continuation of the method in [47],
which detect the specular reflections in the image and therefore is independent on
which color the stones have. To evaluate the result, a somewhat simplified version
of the method presented in [45] has been used. This method uses the color of the
stone and is not suitable for darker stones. That method was used as evaluation
method since it first segments the bitumen from the stones. Therefore the result
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can be analyzed to see if it is reliable, as long as lighter stones are used on which it
can clearly be seen where there is bitumen. The results have also been compared
with manual estimations.

The two methods presented differ in many important aspects. The reference
method estimates the degree of bitumen coverage by segmenting the image into
bitumen and stone. The degree of bitumen coverage is estimated by counting
the number of pixels that were classified as bitumen and stone respectively. The
second method, the general method, uses the amount of specular reflections that
occur in the image to estimate the degree of bitumen coverage. This works since
the specular reflections only occurs in the bitumen covered part of the stones. The
segmentation method in the reference method only works if there is a significant
color difference between the stones and bitumen, where the general method only
uses specularities and therefore the color of the stones does not matter.

3.3 General Method

The idea behind this method is to use specular reflections, that only occurs in the
bitumen covered part of the stones, to estimate the degree of bitumen coverage.
To detect specular reflections, several images with light from different directions
are needed so that reflections occur in one or more of the images but not in the
others. The most practical way to achieve this is to put the stones on a turntable
that is illuminated from one side. Between images the turntable is rotated a few
degrees so that the stones will be illuminated from other angles. With this setup,
the images first need to be registered to each other so that they have the same
orientation before the images can be analyzed. After this, the stones are segmented
from the background and last, the degree of bitumen coverage is estimated by
analyzing the amount of specular reflections in the images.

3.3.1 Experimental Setup

To capture images with light from many different directions, the setup shown in
Figure 3.2 is used. The stones are placed on the turntable, illuminated from the
side by a light source that emits light in a quarter of a circle. In this way the stones
are illuminated from the top and from the side at the same time. The camera is
faced so that the optical axis of the camera coincides with the rotation axis of the
turntable. By rotating the turntable somewhat between the images, many pictures
with light from different directions are produced.
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Figure 3.2: The experimental setup that is used for this method. There is a
camera placed straight above the center of a turntable so that its optical axis
coincides with the rotation axis of the turntable. There is also a light source
placed on one side of the turntable which illuminates one side of the stones.
When the turntable is rotated a few degrees, other sides of the stones will be
illuminated.

3.3.2 Registration of the Images

To be able to analyze the images they need to be registered to each other. The first
image is used as a reference image and the others are transformed to correspond
to that. This is done by extracting four key points in all images and use these
points to calculate a homography from all images to the reference image. Four
markers with the shape of small checker patterns are put on the turntable as these
key points.

Detection of the Checker Patterns

To find the four checker patterns in the image, a sliding window detector was
used. Each window is a small part from the image that is 10 ⇥ 10 pixels. These
small image patches are converted to binary images by setting all pixels that have
higher intensities than the mean intensity in the patch to white and the rest to
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black. An image, in which the four checker patterns should be found, can be seen
in Figure 3.3a. Four semi-random selected patches are marked with red squares
and close-ups of these patches can be seen in Figure 3.3b. Figure 3.3c shows these
patches after conversion to binary images.

The binary patch is then compared to a stack of binary checker patterns ro-
tated in different ways, some patterns from the stack are shown in Figure 3.3d.
For all images in the stack the differences between the binary image and the pat-
terns are computed and the smallest difference is stored. Then, the four checker
patterns are found as the four best locations in the image, where the difference
between the binary patch and the best fit pattern is small.

(a) (b) (c) (d)

Figure 3.3: Detection of the checker patterns. (a) the downscaled grayscale im-
age with four patches marked with red squares, (b) close-ups of the four patches,
(c) the patches converted to binary images, (d) the patterns for comparison.

Finding the Key Points

The key points are chosen as the intersection point for the four squares in the
checker pattern. To find this point, points at the boundary between the white
and the black areas are extracted. Here one could use sub-pixel methods, [4,
5], for improving the precision in the edge detection and thus in the precision
of the key points. The small images with these points marked can be seen in
Figure 3.4a as green stars. Then a RANSAC, [28], inspired algorithm was used
to fit two perpendicular lines to the points, these lines are shown in red lines in
Figure 3.4b. First, one line was fitted, then the points that were classified as inliers
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were removed and a new line to the remaining points was fitted. The key point
was found by finding the intersection between these two lines, shown as a yellow
circle in Fig 3.4c.

(a) (b) (c)

Figure 3.4: Finding the intersection point in a small image of a checker pattern.
(a) the detected points marked with green stars, (b) the two fitted lines in red
lines, (c) the intersection point marked with a yellow circle.

Transformation of the Images

When images share the same camera center, which all images do in our setup,
there exists a homography between the two images. The homography can be
described by a 3⇥ 3 matrix, H , that satisfies

�x = Hy, (3.1)

where x is the point in the reference image, y is the point in the image that
should be transformed, H is the homography between the images and � is a
scaling factor. The points x and y are expressed in homogenous coordinates.

To estimate the homography, at least four corresponding key points are needed.
The corresponding points needed is now found but in a random order. To know
which point in an image in the series that correspond to a point in the reference
image, the positions in the previous image in the series are stored and the order of
the new points that minimizes the total distance between the new points and the
points in the previous image is chosen. This works as long as the turntable is not
rotated too much between two consecutive images.

Once the homography between an image and the reference image is known,
it can be used to transform all points to their position in the reference image. This
procedure is repeated for all the images in the series. While doing this, a mask that
will be white for pixels that are inside all images and black otherwise is created.
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Between two consecutive images in the series the turntable is rotated around
10°. Figure 3.5 shows some examples of those images, between two consecutive
images in the figure the turntable has been rotated around 90°.

Figure 3.5: Four of the original images obtained by the experimental setup used
in this experiment. The images are rotated relative each other and the light
comes from the same direction in all images.

The transformed images can be seen in Fig 3.6, now the images are rotated in
the same way but the light looks as it comes from different directions.

Figure 3.6: The images after transformation. Now the images are registered to
each other and the light comes from different directions.

3.3.3 Segmentation of the Stones

To later be able to estimate the degree of bitumen coverage for the stones, not con-
sidering the background, the stones need to be segmented from the background.
Since the shadows are quite sharp in all images, a mean over all the transformed
images is calculated, this will result in an image where the shadows get smooth
and almost disappear. The resulting image can be seen in Figure 3.7. This is the
image that is used for segmenting the stones from the background.

The segmentation is done with a probability based segmentation method.
A reference image in which a segmentation is known is used to create a three-
dimensional histogram, in which the color of the background pixels are stored.
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Figure 3.7: The mean image of all the registered images in the series. Here the
shadows are less sharp than in the original images.

Afterwards some smoothening of the histogram was performed by convolution
with a Gaussian kernel. For a histogram of size 128 ⇥ 128 ⇥ 128 a kernel with
� =

20
3 was used. A histogram for the foreground pixels was also created, but

since it is unknown what it looks like, this histogram is set to be constant. From
these histograms the probability that a pixel of a certain color is background can
be computed. The probability matrix that a pixel is background is computed by

Pbg =

Hbg

Hfg +Hbg
, (3.2)

where Pbg is the probability matrix, Hbg is the histogram for the background
pixels and Hfg is the histogram for the foreground pixels. This technique of
estimating the probability density function is similar to the Parzen-Rosenblatt
window estimation technique, [70, 74].

Once the probability matrix is computed, the probability that a pixel is back-
ground for all the pixels in a new image can be computed. When this is done all
pixels for which the probability for being background is more than 50 % are clas-
sified as background and the rest as foreground. The segmentation is then refined
by first remove very small segments and then reduce the foreground segments by
some pixels by binary erosion to ensure that no background pixels will be classi-
fied as foreground. The final segmentation can be seen in Figure 3.8. The border
between the foreground and background are marked with red lines.
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Figure 3.8: The segmentation result. The red lines show the border between
foreground and background.

3.3.4 Estimation of the Degree of Bitumen Coverage

When a ray of light hits a surface one of the following things can happen; the light
gets absorbed by the object, the light is refracted and continues to travel through
the object or the light is reflected. It is the reflected light that is visible. There are
mainly two types of reflections; specular reflection and diffuse reflection. Specular
reflection happens when the surface is very smooth, in this case all of the light
will be reflected in the same direction. This can be seen in Figure 3.9a, the angle
between the normal of the surface and the incoming light is denoted by ↵i, and
the angle between the normal and the reflected light is denoted by ↵r, these two
angles are always equal, ↵i = ↵r. Diffuse reflections happens in uneven surfaces,
in this case light will get scattered away in all possible directions. This is shown
in Figure 3.9b. The light that hits the camera sensor will be visible in the image.

(a) Specular reflection (b) Diffuse reflection

Figure 3.9: Reflection in two different types of surfaces.
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Bitumen and uncovered stones have different surface characteristics. Bitumen
reflects light in the specular way, depending of the angle of the incoming light the
reflected light will either hit the camera sensor, resulting in a bright spot in the
image or miss the camera sensor resulting in a black spot. The uncovered stones
reflect light in the diffuse way. In this case the direction of the incoming light
does not matter since it will be scattered away in all directions anyway.

To estimate the degree of bitumen coverage, the amount of specular reflec-
tions in the image is investigated. A specular reflection can be detected when a
pixel is very bright in one or more images in the series and much darker in other
images. To find specular reflections, the difference between the highest intensity
for a pixel through the whole series of images and the lowest intensity for the
same pixel is calculated. The difference image is shown in Figure 3.10; white
means high difference and black low. The stones in the image are completely cov-

Figure 3.10: The difference between the highest intensity in all images and the
lowest intensity. White means high difference and black low.

ered in bitumen. In the ideal case specular reflections occur everywhere but that
is not physically possible, it depends on the orientations of the surface patches. If
the distance to the camera is assumed to be much larger than the height of the
stones, specular reflections cannot occur for surfaces that have larger angle than
45° between the surface and the turntable. This is illustrated in Figure 3.11. The
figure shows two rays from a light source, one of them hits the top surface of the
stone and is reflected towards the camera. The other ray hits the other side of
the stone, this ray is reflected away from the camera and will not be visible in the
image.
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Figure 3.11

To compensate for this, a reference series with stones that are completely cov-
ered in bitumen is used and the amount of specular reflections for those stones is
estimated. A specular reflection is detected when the difference between the high-
est and the lowest intensity is higher than some threshold. To find a good value
for the threshold an image of stones completely covered in bitumen and an image
of stones without any bitumen were used. By varying the threshold and detecting
specular reflections an ROC curve can be achieved. True positives is defined to be
pixels in the difference image of stones completely covered in bitumen with pixels
values higher than the threshold and true negative is defined to be pixels in the
difference image of stones not covered at all that has a lower pixel value than the
threshold. In both images the background is first removed. The resulting ROC
curve can be seen in Figure 3.12. To have as high sensitivity as possible and keep-
ing specificity higher than 0.99, a threshold on 150 seems to be the best choice.
This point is marked with a red point in the plot.

The amount of specular reflections is calculated as

a =

# foreground pixels with difference � 150
# foreground pixels

. (3.3)

The amount of specular reflection in the image with stones completely cov-
ered in bitumen is denoted by a0, then for all other images of stones partly cov-
ered, the degree of bitumen coverage is estimated as

doc =
a

a0
, (3.4)
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Figure 3.12: ROC curve while changing the threshold, the chosen threshold is
marked with a red dot at the curve.

where doc is the degree of bitumen coverage, a is the amount of specular reflec-
tions in the current image and a0 the amount of specular reflections in the image
of stones completely covered in bitumen.

3.4 Reference Method

In this method, the images are segmented into background, stones and bitumen.
In order to have a correct segmentation it is important to avoid specular reflec-
tions as much as possible. Then, the segmentation result is used to compute the
degree of bitumen coverage. Two reference images were used, one of stones that is
completely covered in bitumen and one of stones not covered at all. The reference
images are used to get knowledge of how a typical bitumen and stone pixel look
like. When this is known, the degree of bitumen coverage for some test images
of stones partly covered in bitumen can be estimated. To do that, the stones are
first segmented from the background. For each stone a small graph is created and
the bitumen is segmented from the stone using a graph-cut algorithm. Once the
bitumen is segmented from the stones, the degree of bitumen coverage can be
estimated by counting the number of bitumen and stone pixels.
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3.4.1 Preparations

The images used in this method comes from the same experimental setup that
was used in Section 3.3. Instead of using the difference images, an image was
created by using the lowest intensity for the pixel in the series of images. In this
way, specular reflections are avoided in the images. Since very bright stones were
used it will still be a clear color difference between the stones and the bitumen.

Two reference images and a number of test images are used as input to the
method. The reference images are used to get knowledge of how a typical stone
or bitumen pixel look like in the images, there is one depicting stones that are not
covered at all and one depicting stones completely covered in bitumen. For the
test images, the degree of bitumen coverage should be calculated. Some examples
of reference images and test images can be seen in Figure 3.13.

reference images

bitumen stone
test images

Figure 3.13: Some examples of reference images and test images. One image of
stones completely covered in bitumen and one image of stones not covered at all
was used as reference images. The test images are images of stones partly covered
in bitumen for which the degree of bitumen coverage should be estimated.

Intensity Adjustment

To be able to compare intensities in different images to each other, they need to
have the same intensity on the background. To ensure this, a reference stick was
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put in the images with three different fields of white, light gray and dark gray.
These fields can be used to adjust the intensities in the images to correspond to a
reference image. To find the fields in the image a search for large homogeneous
areas, areas without edges, was performed. Figure 3.14 shows a plot for the in-
tensities in one channel for the three fields for two images. The intensities for the
image that should be adjusted is on the x-axis and the intensities for the reference
image is on the y-axis. A linear function y = kx + m was fitted to the points
using the least square method.
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Figure 3.14: Intensities in one channel for a reference image and the image that
should be adjusted. The intensities for the three fields for the image that should
be adjusted is on the x-axis and the intensities for the reference image is on the
y-axis. A linear function with slope k and constant term m is fitted the the
points.

The intensities in one channel can be adjusted by computing

Inew = kIold +m, (3.5)

where Inew is the intensity after adjustment, k is the slope of the linear function,
Iold is the intensity for the image before adjustment and m is the constant term
for the function. This adjust one channel in the image, the other two are adjusted
in the same way.
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Clustering

To find out how a typical stone or bitumen pixel looks like, the two reference
images were used to cluster the foreground pixels into different clusters where
pixels that belongs to the same cluster are similar to each other. First the back-
ground has to be removed so that only stone or bitumen pixels are clustered. The
segmentation obtained by the segmentation in Section 3.3 was used.

The clustering is done using a k-means clustering algorithm that is described
in [61]. The clusters are represented by its cluster center that is the mean value of
all the pixels in the cluster. Figure 3.15 shows the process of cluster the pixels for a
small image of one stone. The original image is shown in Figure 3.15a. After that
the background is removed, the image in Figure 3.15b was obtained, the pixels
belonging to the foreground are then clustered into five different cluster, shown
in Figure 3.15c. The image in Figure 3.15d shows which pixel in the image that
belongs to which cluster.

(a)

background
removal

(b)

clustering

(c)

(d)

Figure 3.15: The clustering process for one stone. (a) the original image, (b) the
image with the background removed, (c) the five clusters and (d) shows which
pixels that belong to which cluster.

To investigate how the number of clusters affect the segmentation result,
ground truth for a small number of stones were created. After removing the
background from the reference images they were clustered into clusters, varying
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the number of clusters. The same number of clusters was used for bitumen and
stone pixels. Using this clusters the bitumen was segmented from the stones and
the Jaccard score between the segmentation and the ground truth was calculated.
The Jaccard score for two segmentations is defined to be the quotient between the
intersection of the segmentations and the union of them. The score is between
0 and 1, where 1 is a perfect segmentation according to the ground truth. The
initialization of the k-means algorithm is done by randomly place cluster centers,
therefore the clusters will differ somewhat running k-means more than once, this
will also affect the segmentation result. To evaluate the number of clusters the
experiments were performed five times with different cluster centers. The result
of this is shown in Figure 3.16, where the blue lines shows the Jaccard score for
an individual trial and the thicker black line is the mean over the five experiment.
As can be seen the difference is very small for everything between 2 and 7 clusters.
A number in between, 5, is chosen to reduce processing time but still make sure
that the method will still work on stones with higher variance in appearance.
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Figure 3.16: Jaccard score for different number of clusters used to cluster the
bitumen and stone pixels.

3.4.2 Segmenting Bitumen from Stone

To segment the bitumen covered part of the stone from the uncovered parts, a
graph-cut method [11, 12, 49, 10] was used. When segmenting with the graph-
cut method one represent the image as a graph where the nodes represent the
pixels in the image. The nodes are connected with edges that have certain weights;
the weights can be the same for all pair of pixels or be set individually for each pair.
All the nodes are then also connected to a foreground node, called S-node, and a
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background node, called T -node. These edges have weights that typically depend
on the intensity difference between the pixel and the foreground and background
node respectively. The segmentation is obtained by cutting edges in the graph so
that there does not exist a path from the S-node to the T -node and set the pixels
connected to the S-node to foreground and the rest to background.

Calculating the Weights

The bitumen covered part of the stone are set to foreground and the rest to back-
ground. To set the weights between pixels and the foreground node, the distance
to the cluster centers for the bitumen pixels computed in Section 3.4.1 is used.
This will measure how similar a pixel in the image is to a bitumen pixel. The
distance from a pixel to a cluster center is computed by

dik = kpi � pkk2, (3.6)

where dik is the distance from pixel i to cluster center k, pi is the tree dimensional
pixel value for pixel i and pk is the vector that describe the cluster center for
cluster k.

A pixel is more likely to be bitumen if the pixel lies closer to a bitumen cluster
than to a stone cluster. If a bitumen cluster is very close and the closest stone clus-
ter is far away the possibility for being bitumen is much higher than if the closest
bitumen cluster and the closest stone cluster are equally far away. Therefore, the
weight from a pixel i to the S-node, denoted by wiS is set to be the normalized
distance

wiS =

dib
dib + dis

, (3.7)

where dib is the distance from pixel i to the closest bitumen cluster and dis is the
distance from the pixel to the closest stone cluster.

The weight from pixel i to the T -node, wiT , is then set to

wiT = 1� wiS . (3.8)

The weights between two neighboring pixels depends on the color difference
between the pixels and is set to

wij = e�d2
ij/2�2

, (3.9)
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where wij is the weight on the edge between pixel i and pixel j, � is a constant
that controls how fast the exponential function decreases. The term dij is the
normalized color difference between pixel i and pixel j and is calculated as

dij =
kpi � pjk2

255
p

3
, (3.10)

where pi is the color for pixel i and pj is the color for pixel j. By this normaliza-
tion we get that 0  dij  1.

To find a good value for �, ground truth was created for a few stones by
manually segmenting bitumen from stone. For these stones segmentation with
graph-cut was performed with different values on � and the Jaccard score between
those segmentations and the ground truth were calculated. A plot of the Jaccard
scores is shown in Figure 3.17. As can be seen in the plot there is a very small
difference in the Jaccard scores for 0  �  0.03. The value � = 0.02 was
chosen and by looking at the segmentation result for a larger set of stones without
ground truth, it was confirmed that it was indeed a suitable value.
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Figure 3.17: Jaccard score for different values of �, the optimal value should be
somewhere between 0 and 0.03.

3.4.3 Estimation of the Degree of Bitumen Coverage

Once the segmentation is done, the degree of bitumen coverage is calculated by
simply count the number of pixels that are classified as bitumen and divide it
by the total number of foreground pixels. The degree of bitumen coverage is
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calculated by

doc =
# bitumen pixels

# foreground pixels
. (3.11)

3.5 Experiments

Four bottles with stones were analyzed with the two image analysis methods, two
of the bottles were rolled for six hours and the other two were rolled for 24 hours.
For each bottle three series of images were taken, between the series the stones
were collected and replaced on the turntable. There are also a manual estimation
from three laboratory assistants for each bottle.

The segmentation result, using the reference method, for the first trial for
the four bottles can be seen in Figure 3.18 - 3.21, the red lines show the border
between the foreground and the background and the green lines show the border
between bitumen and stone. The images to the right are close-ups of some stones
in the corresponding left image.

(a) (b)

Figure 3.18: The segmentation result for the first bottle. The red lines show the
border between foreground and background and the green lines show the border
between bitumen and stone. (b) is a close-up of one stone in (a).

As can be seen in the images the green lines fit very well to what is expected
to be the border between bitumen and stone. This implies that the segmentation
is very good and that the estimated degree of bitumen coverage should be close to
the true value.

The estimated degree of bitumen coverage can be seen in Table 3.1. The
table shows the estimated vales for both image analysis methods and the values
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(a) (b)

Figure 3.19: The segmentation result for the second bottle. The red lines show
the border between foreground and background and the green lines show the
border between bitumen and stone. (b) is a close-up of one stone in (a).

(a) (b)

Figure 3.20: The segmentation result for the third bottle. The red lines show
the border between foreground and background and the green lines show the
border between bitumen and stone. (b) is a close-up of one stone in (a).

estimated by three different laboratory assistants. For the image analysis methods
there are three series of pictures with the stones places differently for each bottle,
while there is only one measurement per laboratory assistant. As described in
the rolling bottle test standard, the manual estimation is always performed by at
least two laboratory assistants, the result of the test will be the mean over the
measurements of the assistants rounded to the closest 5 %. For this evaluation
however, it is also of interest to see the variation between different assistants and
different placing of the stones, therefore all numbers are presented in the table
below.
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(a) (b)

Figure 3.21: The segmentation result for the fourth bottle. The red lines show
the border between foreground and background and the green lines show the
border between bitumen and stone. (b) is a close-up of one stone in (a).

Table 3.1: The result of the two image analysis methods and manual estimations
of three laboratory assistants.

trial ref. method gen. method ass 1 ass 2 ass 3
PA_1 58.1 45.5

80 70 80PA_2 60.6 48.4
PA_3 58.2 46.4
P5_1 53.8 42.7

75 70 80P5_2 57.2 49.2
P5_3 58.4 52.1
P4_1 18.1 14.3

15 15 15P4_2 20.1 19.3
P4_3 18.7 17.4
P1_1 15.9 12.7

18 15 15P1_2 18.0 13.5
P1_3 17.1 14.1

The manual estimations are not the ground truth and the degree of bitumen
coverage differs in many cases between the laboratory assistants. The estimations
are done according to some predefined guidelines but it is still difficult to estimate
the percentage by hand. Since the segmentation we get from the reference method
can be visualized and it agrees well with what is expected to be bitumen and stone,
the estimated value for the degree of bitumen coverage can be assumed to be very
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close to the true value and those values are used as the truth. It can also be seen in
the table that the general method seems to underestimate the degree of bitumen
coverage a bit, but the underestimation is quite consistent for all the trials.

A simplified version of Table 3.1 is shown in Table 3.2. The table shows the
mean value of the different trials for all bottles for both image analysis methods
and by manual estimations, all rounded to the closest 5 %.

Table 3.2: The mean values of the result of the two image analysis methods and
manual estimations of three laboratory assistants rounded to the closest 5 %.

trial ref. method gen. method manual
PA_1 60 45 75
P5_2 55 50 75
P4_2 20 15 15
P1_2 15 15 15

The quotient between the values estimated by the two image analysis methods
can be computed. Doing that, it can be noticed that quotient does not differ
significantly between the different trials. To find an optimal value, k, to multiply
the values estimated by the general method we have minimized the function

min

k

nX

i=1

✓
1� k

yi
xi

◆2

, (3.12)

where xi are the estimated coverage by using the reference method and yi is the
estimated values for the general method.

Minimizing this gives

k⇤ =

Pn
i=1 yi/xiPn

i=1 (yi/xi)
2 . (3.13)

To cross-validate our results two trials per bottle has been used to estimate
the optimal quotient for those values and tested on the rest. This was performed
for all three possibilities to choose two trials for the optimization. The result of
this can be seen in Table 3.3, in the table the red values are the ones not used in
the optimization but the ones that was tested on. The relative mean error was
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calculated as

e =
1
n

nX

i=1

|k⇤yi � xi|
k⇤yi

, (3.14)

where k⇤ is the optimal quotient obtain by (3.13) and xi and yi are the estimated
values for the reference method and the general method respectively.

Table 3.3: Cross-validation of the optimizations results and the relative mean
errors.

trial ref. method 1 and 2 1 and 3 2 and 3
PA_1 58.1 55.4 54.8 53.1
PA_2 60.6 59.0 58.4 56.5
PA_3 58.2 56.4 55.9 54.1
P5_1 53.8 52.0 51.5 49.8
P5_2 57.2 59.9 59.4 57.4
P5_3 58.4 63.4 62.8 60.8
P4_1 18.1 17.4 17.3 16.7
P4_2 20.1 23.5 23.3 22.5
P4_3 18.7 21.2 21.0 20.3
P1_1 15.9 15.4 15.3 14.8
P1_2 18.0 16.4 16.3 15.7
P1_3 17.1 17.1 17.0 16.4

e 0.0584 0.0617 0.0751

As can be seen in the table, the two methods do not differ significantly after it
has been compensated with the quotient, k, and there is no significant difference
depending on which trials used for optimization. This result implies that some
stones with clear difference between stone and bitumen can be used to calibrate
the general method to get very close to the true degree of bitumen coverage.

3.6 Conclusions

A method to estimate the degree of bitumen coverage of stones partly covered in
bitumen that does not depend on the color of the stones has been presented. The
results have been compared with the result of a reliable method using stones of
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light rock type and the results are consistent with those. Lighter stones for which
the degree of bitumen coverage can be estimated using other methods can be used
to calibrate the variables in the method to give result that are very close to the
true coverage. Even without the calibration, the method can be used to compare
different stone materials to each other. The result is objective and will not change
depending on which laboratory that use the program.
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Chapter 4

Grain Size Distribution in
Asphalt Samples

One of the quality controls of hot mix asphalt (HMA) is to check if the grain size
distribution in the asphalt follows the recipe of the mixture. This check could
be performed on HMA directly from the plant or on samples that are drilled
from the finished pavement. The quality check includes determination of par-
ticle size distribution via sieving. The test consists of the determination of the
particle size distribution of the aggregates in the bituminous mixture by siev-
ing and weighing. A granulometric analysis of the aggregate is performed after
binder extraction. The binder extraction is often performed with methylenchlo-
ride (dichloromethane). Methylenchloride is toxic and the European Union has
decided to reduce the usage of methylenchloride.

After the binder distraction the material is sieved in order to determine the
particle size distribution. The method proposed in this chapter is an alternative to
binder extraction in combination with sieving. The asphalt sample to be analyzed
is sliced into a few slices. Then each two-dimensional slice is analyzed by image
analysis methods to find the size distribution for all slices. The work in this
chapter is based on the work in our article [48].

4.1 Related Work

There are a few attempts to estimate the grain size distribution from two-dimen-
sional cross-sections of asphalt samples. The article [17] combines a canny edge
detection with thresholding to find an initial segmentation of the image. They
use the watershed algorithm to deal with the problem of grains being too close to
each other and therefore segmented as one segment. The watershed algorithm is
performed on a distance image, the binary image of the foreground after applying
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boolean distance to it. In this way they separate segments with concavities along
the contours.

In [83] they use the L*a*b color space to segment the grains from the bitumen
background. After converting to the L*a*b color space they easily find a good
threshold and then they perform thresholding. The same problem as mentioned
in the earlier article with undersegmented segments they also find and solve it in
the same way with the watershed algorithm.

Both articles compare to the true aggregate gradation and both show good
correlations. However, it is unclear how they from the image segmentation calcu-
lates the size distribution.

4.2 Finding the Stones

To estimate the size distribution of the stones in one slice of the sample we first
segment the image by using the fast marching method. In the resulting segmenta-
tion it often happens that stones lying too close to each other belongs to the same
foreground segment even if they are not supposed to. In order to get correct size
estimations we need to separate these segments. This is done by applying some
morphological operations.

4.2.1 Segmentation by Fast Marching

To segment the stones from the background the fast marching method described
in Section 2.4 was used. To know at what speed the curve should advance at
a certain point we need a speed function. We choose to use a logistic function
defined by

F (x, y) =
1

1 + eI(x,y)/v
, (4.1)

where F (x, y) is the speed at point, (x, y), I(x, y) is the intensity at the same
point in the input image and v is a scaling factor that controls the steepness of the
function. The function for three different values on v can be seen in Figure 4.1.

The speed function is then applied to the original image converted to grayscale.
The original image and the speed image can be seen in Figure 4.2.

The fast marching algorithm produces the arrival times for every grid point,
pixel in this case. The image is then segmented by thresholding the arrival times.
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v 

v 

v 

Figure 4.1: The speed function used with three different values on the steepness
factor v. On the y-axis is the speed and on the x-axis is the pixel intensity.

Figure 4.2: The original image to the left and the speed image to the right.

Pixels with arrival times smaller than the threshold are set to background and the
rest to foreground.

4.2.2 Refining the Segmentation

Sometimes when stones are very close to each other in the sample it is not enough
bitumen between them, and the fast marching algorithm have a hard time separat-
ing those stones into different segments. Separating the segments would require a
high threshold, but using a too high threshold would make it impossible to find
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the smaller stones in the sample. Therefore we choose a lower threshold and try
to deal with the undersegmented segments in another way. Figure 4.3 shows such
a segment.

Figure 4.3: A segment with strange shape that probably should be two different
segments. The red line shows the border of the segment.

For this purpose we use the morphological methods erosion and dilation in
a clever way. First we perform binary erosion on the segments. This will, if the
segments have concavities, cause the segment to eventually fall apart into two or
more segments. If the size of the segment, after performing erosion repeatedly
without the segment falling apart, is less than half of the original size, we assume
that the segment represent one stone and use the original segment. When it does
fall apart, we continue the process on the new smaller segments keeping count
on how many times we perform the erosion. Afterwards we perform dilation the
same number of times that we performed erosion until the last separation of the
segment. In this way all non-convex segments get separated in two or more new
segments. Some smoothing of the contour will also occur. This will not cause
any problems for the overall method since we are not interested in the shape of
the segment itself, only in the size of it. Both erosion and dilation are performed
with a disc of radius 4 pixels as structuring element.
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Separation of segments

For all segments:
until the segment is too small:

perform binary erosion
if separated:

run the algorithm again on the new segments
dilate if the segment was separated earlier

This will in some cases cause some overlap between different segments. Since
we do not want that, we find these intersections of segments, and assign all those
pixels to belong to either of the overlapping segments. This is done by first sub-
tracting the overlap from all the interesting segments and then iteratively alternate
between first dilate one of the two segment, assign the pixels in the intersection
between the overlap and the dilated segment to that segment and then perform
the same thing with the other segment. This continues until all points in the
overlap are assigned to one of the segments.

After applying this algorithm to the segments in Figure 4.3 we get the result
shown in Figure 4.4. The image shows the original segment with the border of
the new ones drawn with red contours.

4.3 Size Estimation

To estimate the size of the stones we use the method described in [84], slightly
adjusted, to find the rectangles that fit the segments best. The best-fit rectangle is
the rectangle with the smallest width that the segment fit into.

The method consists of two main steps, first the orientation of the segment is
estimated using the least-second moment method. Then the rectangle is fit using
the Multiple Ferret method. The idea is to find the orientation by finding the line
through the object that minimizes the total moment. Figure 4.5 shows a segment
with such a line through the center of mass of the segment. This line has the
direction (cos ✓, sin ✓), where ✓ is the angle between the line and the x-axis. We
translate the segment so that the origin coincides with the center of mass of the
segment.
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Figure 4.4: The segment after separation to two new smaller segments. The red
lines indicates where the borders of the separated segments are.

R

Figure 4.5: The main rotation axis.

The total moment is expressed by the integral

E =

ZZ

⌦

R2
dxdy, (4.2)

where R is the perpendicular distance from the point (x, y) to the line we seek
and ⌦ is the integration area, the segment we want to find the orientation of.

The distance, R, for a point x = (x, y) can be achieved by taking the dot
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product between the vector from the origin to the point and the normalized nor-
mal to the line. The normal is given by (� sin ✓, cos ✓). Then we can write the
integral in equation (4.2) as

E =

ZZ

⌦

(�x sin ✓ + y cos ✓)2
dxdy

=

ZZ

⌦

⌦x
2
sin

2 ✓ � 2xy sin ✓ cos ✓ + y2
cos

2 ✓ dxdy. (4.3)

By introducing

Ixx =

ZZ

⌦
x2

dxdy,

Ixy =

ZZ

⌦
xy dxdy and

Iyy =

ZZ

⌦
y2

dxdy,

we can write this as

E =

�
� sin ✓ cos ✓

�✓Ixx Ixy
Ixy Iyy

◆✓
� sin ✓
cos ✓

◆
. (4.4)

Minimizing this is equivalent to minimizing the quadratic form wT Iw, subject
to |w| = 1, where

I =

✓
Ixx Ixy
Ixy Iyy

◆
and w =

✓
� sin ✓
cos ✓

◆
.

We seek the direction, u, that minimizes this quadratic form. This can be found
as the eigenvector that corresponds to the smallest eigenvalue of the matrix I . To
fit the box around the segment we also need a vector v that is perpendicular to u.
Since I is symmetric, the two eigenvectors will be orthogonal, therefore we find
the vector v by taking the other eigenvector of I .

If we know the orientation of the object we can find a box around the segment
by using dot products. We start by extracting all boundary points of the segment.
For all these boundary points, x = (x, y), we calculate the dot product between
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the point vector and the vector u we calculated before as the direction of the main
rotation axis.

By taking the dot products between a point vector, x, and the vector u we
get the length of the orthogonal projection of x on u. If we store the points that
gives the highest and lowest value of the dot product we get the points x1 and
x2 shown in Figure 4.6. The points together with the direction v gives us the
two lines l1 and l2 that both are tangents to the segment, where the vector v is
calculated as mentioned before.

u

l

l

v

v

x

x

Figure 4.6: The points that gives the smallest and largest dot product between
itself and u. The vector v is perpendicular to u and shows the direction of the
lines l1 and l2.

In the same manner we can calculate the dot product between the boundary
points and the vector v, find the maximum and the minimum and receive the
lines l3 and l4, shown in Figure 4.7. The corners of the rectangle are then achieved
by finding the four intersections of the lines.

The orientation of the segment that we get from minimizing the total mo-
ment will just give us an approximative estimation of the angle of the rectangle.
To find the rectangle with the smallest width that the segment fit into we try a
few directions around u and v by rotating those vectors with some small positive
and negative angles. For all those directions we calculate a rectangle and then we
choose the one with the smallest width.
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l

l

l

l

Figure 4.7: The four lines that surround the segment.

Figure 4.8 shows the best fit rectangle for some segments, the red lines show
the rectangles using the angle estimated by the total moment method and the
cyan colored lines show the rectangles after optimization.

Figure 4.8: Four segments with the best fit rectangle in cyan colored lines and
the rectangle obtained with the angle estimated by the total moment method
shown in red lines.
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4.3.1 Estimation of the Size Distribution

To estimate the size distribution of the stones in the asphalt sample we want to
estimate the weight percentage of stones that passes a certain sieve size. First
we estimate how many millimeters one pixel corresponds to by choosing two
points in the image we know the true distance in millimeters for and compare
this distance with the distance in pixels. Then for each sieve size we calculate the
total area of the segments that have width smaller or equal to the current sieve size
and divide it by the total area of all segments. The percentage of weight, Ss, that
passes sieve size s is calculated by

Ss = 100
As

AT
, (4.5)

where As is the total area of the stones passing sieve with size s and AT is the
total area of the stones in the cross section.

Due to limitations of the camera we can not see stones that are too small,
therefore we have to adjust our curve somewhat. We assume that we should be
able to find stones bigger than 0.5 mm but that it could be hard to find stones
much smaller. Therefore we omit stones smaller than 0.5 mm in our analyze by
subtracting the percentage of passing sieve with size 0.5 mm and renormalize.
The new passing percentage is calculated by

ˆSs = 100
Ss � S0.5

100� S0.5
. (4.6)

4.4 Results

Figure 4.9 shows an asphalt sample with the best-fit rectangle for the detected
stones in cyan-colored lines. The right image shows a close up of some part of
the left image. By looking in the image we see that the boxes seem to fit what we
would expect is the stones in the sample quite well. All the visible stones in this
sample also seem to be surrounded by a box indicating that the method works
well to find the stones in the two dimensional image.

We have analyzed four slices of an asphalt sample and compared to the given
recipe of the asphalt. The sample was also analyzed in the standard way by dis-
solving the samples in methylenchloride followed by sieving and weighing. Both
of the later curves were renormalized by omitting the smaller sizes as described
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Figure 4.9: Original image with the best-fit rectangle marked with cyan colored
lines, the right image is a close up of a part of the left image.

earlier. Figure 4.10 shows the size distribution of the grains. On the y-axis is the
percentage of stone mass passing the sieve for different sieve sizes on the x-axis.
The black curve shows the distribution according to the recipe of the asphalt, the
dashed black curve shows the size distribution according to the analyze done by
the standard method and the red curve shows the size distribution given by the
image analysis method described in the chapter. The curve is a mean over the four
slices. The numbers can be seen in Table 4.1.

Table 4.1: Percentage of passing for the recipe and the two analysis methods.

percentage passing sieve size
2 mm 8 mm 16 mm

recipe 21.0 % 66.7 % 97.5 %
standard method 18.1 % 63.9 % 98.8 %
image analysis 18.7 % 66.6 % 100.0 %

As can be seen in the figure the result from our method follows both the recipe
and the analyze well.

59



Chapter 4. Grain Size Distribution in Asphalt Samples

2 8 16
10

20

30

40

50

60

70

80

90

100

sieve size (mm)

p
e

rc
e

n
ta

g
e

 p
a

ss
in

g

 

 

Figure 4.10: Size distribution of the stones in the asphalt sample. The sieve size
in millimeters is on the x-axis and the percentage passing at a given sieve size is
on the y-axis. The black curve shows the recipe, the dashed black curve shows
the result from the standard analysis and the red curve the result from the image
analysis.

4.5 Conclusions and Future Work

The method shows promising result with rectangles that fit the stones in the sam-
ple very well. Also the calculated size distribution is close to both the recipe of
the asphalt and the result from analysis done by the standard way. However the
method have limitations in finding the smallest of the stones, in order to do that
we need cameras with better resolutions such as microscopes. Also some more
experiments have to be done to evaluate the method a bit more.
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Chapter 5

Preliminaries on Machine
Learning

A very common problem in both image analysis and other areas is classification
of data. Classification is the problem of identifying which category a certain
observation belongs to. The algorithm that assign the data to different classes is
called a classifier.

The training of the classifier is an example of supervised learning. In super-
vised learning the algorithm is trained by use of some training data that consists
of data points, or observations, with a label associated. If the training data do not
have any labels associated we instead use unsupervised learning. An example of
unsupervised learning is clustering, for example by the well known k-means al-
gorithm [61], where the data is grouped into different groups where similar data
points belong to the same group. This chapter aims to give some introduction
on supervised learning and to present some classifications methods. The first two
methods; support vector machines [21] and random forest [14] use feature vectors
as input, where the features often are hand-crafted to fit the problem. The third
method, deep learning [3], uses images as input and features are extracted from
the images. The features are extracted by performing a series of convolutions on
the image, where the convolution kernels are trained using the training data.

5.1 Support Vector Machines

Support vector machines [21] is a binary classification algorithm that tries to sep-
arate data in an n-dimensional space with an (n � 1)-dimensional hyperplane.
After finding the hyperplane that separates the training data in the best way, a new
data point can be classified by looking at what side of the hyperplane the point is.
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5.1.1 Optimal Separating Hyperplane

First we assume that the data points are well separated, that means that we can
separate the data points with a hyperplane without errors. Figure 5.1a shows an
example of well separated data in two dimensions. The red points belong to one
class, and the blue points belong to the other class. These two groups can be
separated by different lines, three examples of separating lines are shown in the
figure. The dashed lines separates the groups but not in an optimal way, line
shown in solid black is the optimal way to separate the points, this is called the
optimal separating hyperplane.

(a) A few separating hyperplanes.

d

d

(b) Hyperplane with margins.

Figure 5.1: Example of the optimal separating hyperplane for two-dimensional
data. The red points belong to one class and the blue points to another class. (a)
shows some possible separating hyperplanes with the optimal separating hyper-
plane marked with a solid black line. (b) shows the optimal separating hyper-
plane with margins marked with dashed lines. The support vectors that is the
points closest to the plane is marked with circles, the distance from them to the
separating hyperplane is denoted by d.

The reason for that the line shown in solid black is the optimal separating
line is because the margin to the points are larger than for all other lines. These
margins are illustrated in Figure 5.1b and are the distance, denoted by d, between
the solid black line and the dashed lines. The points marked with circles are the
points closest to the optimal hyperplane, these points are called support vectors.

To find the optimal hyperplane we have to find the hyperplane that maximizes
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5.1. Support Vector Machines

the distance d. We can write a hyperplane as w · x+ b = 0, where w is a vector
of coefficients, x are points of the hyperplane and b is a constant.

By labeling the training data x1, . . . ,xm with labels y1, . . . , ym, where yi is
either 1 or �1 depending on which class xi belongs, a hyperplane can be found
so that all training points satisfy

(
w · xi + b � 1 if yi = 1,

w · xi + b  �1 if yi = �1,
(5.1)

where yi is the label for point xi. These inequalities can also be written as one
according to

yi(w · xi + b) � 1 8i. (5.2)

By definition the support vectors satisfy yi(w0 · xi + b0) = 1, this can be
achieved by scaling of the parameters w and b.

The distance, d, between the optimal hyperplane and the supporting vectors
is given by

d(w, b) =
1
2

✓
min

y=1

x ·w
|w| � max

y=�1

x ·w
|w|

◆
. (5.3)

With the optimal hyperplane, w0 · x+ b0 = 0, this distance can be written as

d(w0, b0) =
1

|w0|
=

1
p
w0 ·w0

. (5.4)

Hence we can find the optimal hyperplane by solving the following optimiza-
tion problem

(
minimize 1

2w ·w
subject to yi(w · xi + b) � 1 8i.

(5.5)

This is a quadratic minimization problem with linear constraint. Using the stan-
dard optimization method with Lagrange multipliers we get the Lagrangian func-
tion

LP (w, b,↵) =

1
2
w ·w �

mX

i=1

↵i(yi(w · xi + b)� 1), (5.6)
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where ↵ = (↵1, . . . ,↵m) is a vector of non-negative Lagrange multipliers corre-
sponding to the constraints in (5.2) and m is the number of observations.

At its minima the gradient of LP is zero, therefore by taking the derivative of
LP with respect to w and b we get the following constraints

w =

mX

i=1

↵ixi, (5.7)

mX

i=1

↵iyi = 0. (5.8)

Plugging these conditions into the Lagrangian we get the dual problem

LD(↵) =

mX

i=1

↵i �
1
2

mX

i=1

mX

j=1

↵i↵jyiyjxi · xj . (5.9)

The maximum of this dual function is the same as the minimum for the primal
function in (5.6). Hence, the problem in (5.5) is equivalent to the problem

8
><

>:

maximize ↵1� 1
2↵

TY XXTY↵,

subject to ↵i � 0 8i,
P

↵iyi = 0,

(5.10)

where 1 = (1, . . . , 1)T is an m-dimensional unit vector, where m is the number
of observations, ↵ = (↵1, . . . ,↵m), Y = diag(y1, . . . , ym) and X is a matrix
where each row is an observation.

In the solution, the training points with ↵i > 0 are the support vectors, all
other training points will have ↵i = 0. Then we can write w0 as a linear com-
bination of support vectors. The constant term b0 can be computed by choosing
any point, xi with ↵i > 0 and use the relation yi(w0 · xi + b0) = 1. See [21]
and [18] for a more detailed derivation of the previous results.

A new observation or data point can be classified by looking at which side of
the hyperplane is located. A new observation xnew is labeled according to

ynew = sign(w0 · xnew + b0). (5.11)
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5.1. Support Vector Machines

5.1.2 Soft Margins

Usually the data points are not well separated and there is a certain overlap be-
tween the groups. In this case we cannot maximize the margins in the same way.
To overcome this, we allow for some errors. This approach with soft margins was
first described in [21]. The errors are illustrated in Figure 5.2, the optimal hyper-
plane is marked with a solid black line and the margins with dashed lines. The
points in between the dashed lines are errors and the distance between point xi

and the relevant dashed line is denoted by ⇠i.

ξ
xx

ξ
x

ξ
x

ξ

x

Figure 5.2: A dataset that cannot be separated by a hyperplane. The points x1,
x2, x3 and x4 are errors and the magnitude of the error is denoted by ⇠i for
point xi.

We would like to find a good tradeoff between the margin size and the errors.
With this modification the minimization problem becomes

8
><

>:

minimize 1
2w ·w + � (

Pn
i=1 ⇠i)

k ,

subject to yi(w · xi + b) � 1� ⇠i 8i,
⇠i � 0 8i,

(5.12)

where � is a term that controls how hard to punish errors, with a small � the
minimization problem gets closer to the original optimal separating hyperplane
minimization problem.
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Again we construct the Lagrangian. We see that the term � (

Pn
i=1 ⇠i)

k dis-
appears in the Lagrangian and the dual problem becomes

8
><

>:

maximize ↵1� 1
2↵

TY XXTY↵,

subject to 0  ↵i  � 8i,
P

↵iyi = 0.

(5.13)

5.1.3 Kernels

The svm-classifier can be extended to handle data that could not be linearly sepa-
rated. This is done by transforming the data by some non-linear transformation.
One way to transform the data is by so called basis expansion. In this case we
extend the input space by adding some new basis vectors.

One example of a quadratic basis expansion, h(X), where X is one-dimen-
sional data is

h(X) :

⇥
x
⇤
7!
⇥
x x2

⇤
. (5.14)

Figure 5.3 shows some data in both the input space and the feature space. In
input space, shown in Figure 5.3a the two classes are not linearly separable, but in
the feature space, shown in Figure 5.3b, they can be separated by the black line.

Substituting X by h(X) in (5.13) gives

maximize ↵1� 1
2
↵TY KY↵, (5.15)

where K = h(X)h(X)

T and is called a kernel. The kernel is an m⇥m matrix,
where m is the number of observations, and does not depend on the number of
basis vectors that are used.

If the data is transformed with an appropriate kernel, the data can be linearly
separated in the feature space. This makes the svm-classifier very flexible and
useful for many applications. The approach with kernels was suggested in [9].

Two important kernels are the polynomial and gaussian kernels. The polyno-
mial kernel is defined by

Ki,j = (1 + xix
T
j )

d, (5.16)

where Ki,j is the element on row i and column j in the kernel matrix, xi and xj
are the rows i and j in X . The variable d determines the degree of the pylonomial.

68



5.1. Support Vector Machines

x

(a) In the input space, the two classes
cannot be separated by a line.

xx

x

(b) In the feature space, the two
classes can be separated by the black
line.

Figure 5.3: A two class problem shown in the input space in (a) and the feature
space in (b).

In a similar way the Gaussian kernel is defined by

Ki,j = e�kxi�xjk2/c, (5.17)

where c is a parameter that controls the width of the kernel.
Figure 5.4 shows the resulting hyperplane using a quadratic kernel. The plot

shows the input space, where the points are the original points and the separating
hyperplane has been transformed according to the kernel.
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Figure 5.4: The optimal separating hyperplane in input space.

5.1.4 Multiclass SVM

There are several strategies to extend the binary svm-classifier to support multiple
classes. One commonly used method is to use a one-versus-all strategy. In this
case several classifiers are trained. The first one separates the first class from all the
others, the second classifier separates the second class from the others and so on.
By comparing the distances to the separating planes in all classifiers a new data
point can be classified.

Figure 5.5 shows an example of a three class problem. The red, blue and
green points represent training points of different classes and the gray point is a
new data point that we would like to classify either as red, blue or green. The
lines are the separating hyperplanes, the red line separates the red class from the
blue and green classes. In the same way the blue line separates the blue class from
the red and green classes and the green line separates the green class from the red
and blue classes. A new data point, the gray one, is then classified using each of
the three classifiers. We assume that the data is labeled in a way that the point will
have a positive distance to the red line if it is classified as red in the classifier red
versus blue and green and a negative distance if it is classified as not red. We can
see in the figure that the point will have a positive distance to both the red and the
green line but a negative distance to the blue line. Since the gray point is closer
to the green class the distance to the green line will be larger than to the red line.
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5.1. Support Vector Machines

Hence we can classify a new point by looking at the distance to the separating
hyperplanes for all classifiers, and choose the class that gives the largest distance.

Figure 5.5: A three class problem. The red line separates the red class from the
blue and green classes, the blue line separates the blue class from the red and
green and the green line separates the green class from the red and blue. The
gray point is a new data point that should be classified. It is located with positive
distance to the red and green line but the distance to the green line is largeer than
to the red line, therefore the point is classified to belong to the green class.
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5.2 Random Forest

Decision trees has been used for classifications for a very long time in various
applications. They are a powerful tool and easy to visualize which has made them
very popular. A drawback of these trees is that they have a tendency to overfit
to the data and the variance between trees is fairly big. If the tree is overfitted, it
performs well on the training data but poor on the test data. For this reason many
papers [19, 81, 36, 13, 1] suggest to use an ensemble of decision trees to reduce
variance and to increase accuracy. This has resulted in a so called random forest.
The random forest algorithm was first proposed by Leo Breiman 2001 in [14].
To reduce variance, bootstrap aggregation [13] together with variable reduction
by the subspace method [36] are used to create many uncorrelated trees.

5.2.1 Decision Trees

There are two types of trees; classification trees and regression trees. Classification
trees takes an input vector and classifies that into some pre-defined distinct class.
Regression trees outputs a value that comes from a continuous distribution. For
the rest of the chapter the classification trees are studied.

A tree consist of nodes of different types and branches between them. There
is a root node, internal nodes and leaf nodes. In a classification tree the leaf nodes,
also called terminal nodes, represent the class that the input vector was classified
as. Internal nodes has one incoming branch and two outgoing branches where a
branch leads either to a new internal node or to a leaf node. Which one of the
branches to follow depends on the data and on the criterion in the node. The
root node is the starting node of the tree and does not have any incoming branch.
A node is a parent node to the nodes that the outgoing branches leads to and a
child to the node that the incoming branch comes from.

Figure 5.6 shows a small tree for classifying an animal into one of the four
species; ant, mouse, giraffe or elephant. In this tree each of the variables are
categorical variables that can only take two values

Instead of using categorical variables we can also use continuous variables.
Using the same example as above an animal is described by a feature vector, x =

(x1, x2, x3), where for example x1 is the weight of the animal in kilograms, x2

the number of legs and x3 the length of the neck in meters. A new version of the
tree in Figure 5.6 is shown in Figure 5.7, in this case at each non-terminal node
one of the variables is compared with a threshold. Depending on the value of the
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Figure 5.6: A tree to classify an animal into four different classes. In each none
terminal node a question is asked and depending on the answer the left or right
branches is followed.

variable and the threshold you go either to the left or the right child.

x

x x

Figure 5.7: A tree to classify an animal into four different classes. In each none
terminal node the value of one of the variable is checked, depending on if the
value of the variable is lower or higher than some threshold the left or right
branch is followed.
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Growing the Tree

The classification tree is built using a training set, that consist of input vectors and
a label that tells what the correct class of the vector is. There exist numerous ways
to build a tree, where the main difference is how to split the tree, that is how to
decide the criteria to go to the left or right in a parent node. Figure 5.7 shows an
example of a univariate splitting criteria, that means that only one variable is used
in a node in the splitting criteria. These are the most used types of splitting criteria
and there exists a lot of different methods. There are also multivariate splitting
criteria that uses several variables to decide on the split in each node. These
methods are more complicated and even if they could improve the performance
of the tree a lot, they are not as popular as the univariate splitting criteria. During
the building of the tree, the training data is split into the different nodes until
all nodes are leaf nodes. In the case where a leaf node consists of data of several
classes the majority vote is used as the leaf class.

One of the most popular univariate splitting criteria is based on the Gini index
of diversity. The Gini index of diversity [15, 29] is a measure of node impurity.
If a node only consist of one class it has a Gini index of 0. The maximum Gini
index occurs when there are equally many of each class in a node. To calculate
the Gini index we first need to know the conditioned probability, p(j|t), that an
observation in node t is of class j. This probability is calculated by

p(j|t) = Nj(t)

N(t)
, (5.18)

where Nj(t) is the number of observation of class j in node t and N(t) is the
total number of observations in node t. Since all observations belongs to some
class it must hold that

X

j

p(j|t) = 1. (5.19)

The Gini index is then defined by

G(t) =
X

i 6=j

p(i|t)p(j|t), (5.20)

where G(t) is the Gini index for node t and i and j are two different classes.
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Using that

0

@
X

j

p(j|t)

1

A
2

=

X

i 6=j

p(i|t)p(j|t) +
X

j

p2
(j|t)

and the relation in (5.19) we can rewrite (5.20) as

G(t) =

0

@
X

j

p(j|t)

1

A
2

�
X

j

p2
(j|t) =

X

j

p(j|t) (1� p(j|t))

= 1�
X

j

p2
(j|t). (5.21)

Now, consider a parent node, t, with two child nodes, cl and cr, where cl is
the left child and cr the right child. The goodness of a possible split in the parent
node is evaluated by measuring the weighted node impurity for the two children.
The best split will be the split that minimizes

S = N(cl)G(cl) +N(cr)G(cr), (5.22)

where N(cl) is the number of observations in the left child and G(cl) the Gini
index for the left child. In the same way N(cr) and G(cr) are the number of
observations and the Gini index for the right child.

To find the best split in a node we need to search through all variables, for
each variable we also need to find a good threshold. If we assume that we have N
variables x1, . . . xN and M observations, then for each variable we have at most
M � 1 possible ways to split the data. We therefore have at most M � 1 possible
thresholds in between observations to try for each variable. Then we choose the
split that gives to lowest S. See [72] for many more splitting criteria.

We also need to decide when not to split the data further. For this we need
some kind of stopping criteria. There is no point splitting the node further if
all observations in the node belong to the same class. We can also decide on a
maximum depth of the tree, if this is reached the node becomes a terminal node.
Other stopping criteria could be that there are too few observations in a node or
that the best possible split is not better than some pre-defined threshold.
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Pruning the Tree

It is quite difficult to know how big we should grow the tree. If we choose a weak
stopping criteria resulting in a large tree it is a high risk that the tree will become
overfitted to the data. In the case of overfitting, the tree is able to classify the
training data, but will perform very poor on test data. If we apply a too strong
stopping criteria there is a high risk of missing out on good splits. One way to
come around this is to let the tree grow large and then cutting the branches that
do not contribute much to the performance of the tree. This is called pruning the
tree and is very important when building a single classification tree for classifying
data. There exists several pruning methods, see [72] for an overview.

5.2.2 Random Forest

There are a few problems using decision trees for classification. Say that we build
a few different trees using slightly different data. If we build deep trees there will
be large variations among the trees, however the bias for deep trees is still low,
meaning that if we average the result we are likely to correctly classify the data. If
we build less deep trees the variance will be lower but the bias increases, [24].

Bagging

To reduce variance it was suggested by Leo Breiman in [13] to build an ensemble
of decision trees and to use bootstrap aggregation, bagging, to slightly change the
data for each tree. Giving the trees slightly different data helps to make the trees
uncorrelated and this reduces the variance.

Bagging works in the following way: Having N observations, or data points,
we draw N observations with replacement from the observations. At each draw
some of the data will be left out and some will appear more than once. From each
of this bootstrap samples we build a tree to its maximum size without pruning so
that the bias will still be low.

Variable Reduction by the Subspace Method

Another way to build an ensemble of uncorrelated trees way suggested Tin Kam
Ho in [36]. Instead of using all available features when building the tree a ran-
domized subset of features were selected. By using different subspaces for each
tree it was shown in [37] that the similarities between trees were lower using the
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subspace method than for example using the bagging method, at least when the
feature space was large. In this way the variance can be reduced even more.

Random Forest

Random forest uses a combination of bagging and the subspace method and was
introduced by Leo Breiman in [14]. First, a bootstrap sample from the observa-
tion is drawn, then a subset of features is randomly chosen to build a decision tree.
The number of feature to choose is usually much smaller than the total number
of features. A common choice is to use p =

p
M , rounded downwards where p

is the number of features to use and M is the maximal number of features.

Random Forest
Assume that we have N observations with M features each.
An observation then consist of an M - dimensional vector.

1. Make a bootstrap sample, S, from the observations: draw
N observations with replacement uniformly distributed.

2. Select p features from the M possible features, here
p << M , and use the training data in S to build a de-
cision tree to maximum size without pruning.

3. Repeat 1-2 until a forest of desired many trees is grown.
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5.3 Deep Learning

The idea behind deep learning is to mimic the neural structure of the brain. A
brain consists of a lot of neurons that are connected to each other with synapses in
a giant network, a human brain has approximately 100 billions of neurons with up
to 10000 synapses each. The first step towards deep learning is the development
of artificial neural networks. It was first presented by Warren McCulloch and
Walter Pitts in [63] in 1943 and have since then been developed further [50].

In 1957 Frank Rosenblatt introduced the percpetrone algorithm [73], that is
a small single layer network. The algorithm was implemented in “Mark I percep-
tron”, the first successful neurocomputer. It was able to recognize simple numerics
with an image sensor of 20⇥ 20 pixels.

The most popular training rule for the networks is called backpropagation,
which basically optimizes the weights using a gradient descent approach. It has
been developed by several independent researchers but it was first presented by
Paul Werbos in 1974, [86]. Even though artificial neural networks was promising
in the beginning other machine learning techniques became more popular [67].

In [54], the standard backpropagation rule was used to train a convolutional
neural network with the purpose to recognize numbers in zip codes. The input to
this network was grayscale images with no hand-crafted features. It was shown in
[55] that the use of convolutional neural networks trained with the backpropaga-
tion rule outperformed all other machine learning techniques for classifying the
numbers.

Since then, several improvements of the design have been made to speed up
the training time and to achieve spatial invariance. This has made the use of deep
convolutional networks, convolutional networks with many layers, very popular
in computer vision for object recognition and localization. The use of deep con-
volutional networks has been known as deep learning.

5.3.1 Artificial Neural Networks

The first step towards deep learning was the invention of artificial neural net-
works. The artificial neural networks have a similar structure as the biological
networks but are usually much smaller. The networks consist of different layers
that are connected, there is always one input layer and one output layer, but the
number of layers in between, called hidden layers, varies. A small neural network
can be seen in Figure 5.8. The figure shows a layered network, there are also other
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types of networks but they are not relevant for the rest of the chapter. The neu-
rons are marked with circles and connected neurons are marked with a straight
line between them. Each connection also has a weight associated. The weight
between neuron i and neuron j is denoted by wi,j .

w
w

Figure 5.8: A small neural network with two hidden layers. The neurons are
marked with circles and the connections are marked with straight lines.

Neurons

A layer in the network consist of different neurons. Their task is to retrieve infor-
mation from the connected neurons in the previous layer, process it and send it
further to the connected neurons in the next layer. The processing of the data is
expressed by three functions; a propagation function, an activating function and
an output function. The propagation function is the function that process the
incoming information, then the activation function is called to decide the state of
the neuron; active or not active. At last the output function sends the information
to the next layer.

A common choice of propagation function, fj , is a weighted sum

fj =
X

i2I
wi,joi, (5.23)

where I is the set of neurons that are connected to j, oi is the output from neuron
i and wi,j is the weight on the connection between neuron i and j.
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The activation function then decides on the state of the neuron, the simplest
function used for this is the threshold function

aj(fj) =

(
1 if fj � ✓,

0 if fj < ✓,
(5.24)

where aj is the activating state, fj the output from the propagation function and
✓ the threshold. The threshold function is simple but not differentiable so often
differentiable approximations, for example the Fermi function, are used instead.
The Fermi function, also called sigmoid function, expanded by a temperature
parameter, is defined as

f(x) =
1

1 + e�x/T
, (5.25)

where T is the temperature parameter that controls how much the function is
compressed on the x-axis. The smaller T , the closer the Fermi function is to
the threshold function. An other choice of the activation function could be the
hyperbolic tangent.

At last the output function, which is usually the identity function, forwards
the information to the next layer.

Training

One important feature of the neural networks is its ability to learn, like the human
brain learns by itself. This training could be supervised or unsupervised. In both
cases the network is provided with some training input data. For the supervised
learning it is also provided with some ground truth that is the desired output of
the network. In unsupervised learning, given only the input patterns, the network
tries to identify similarities and classifies the input into classes, where the data in
the same class are similar. It is often more efficient to provide the network with
ground truth so that the output can be compared directly to the desired output
and therefore supervised learning is very practical to use.

While initializing the network the number of layers in the network and the
number of neurons in each layer have to be decided in advance. The choices of
processing functions in the neurons also have to be pre-defined. At first all the
weights in the network are chosen by random, during the training the weights are
updated in an iterative manner until the difference between the desired output
and the actual output gets sufficient small.
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The training is done by optimizing some function that depends on the weights.
It is often useful to minimize the error, that is the difference between the desired
output and the output from the network. We can define the error function as

Err(w) =
1
2

X

p2P

 
X

⌦2O
(tp,⌦ � yp,⌦)

2

!
, (5.26)

where P is the set of training samples, O the set of output neurons, tp,⌦ the
desired output of neuron ⌦ from training sample p. The desired output of neuron
⌦ is 1 if the input pattern belong to the class that the neuron represent and 0
otherwise. The variable yp,⌦ is the actual output of the network and depends on
both the input to the network and the weights.

The most popular training rule method is called backpropagation and was
presented by Paul Werbos in [86]. In backpropagation the derivatives of the error
function with respect to the weight is computed in every step. The method is
based on the well known gradient descent method, but with an efficient way to
compute the derivatives. A derivation of the backpropagation rule is given in [87]
and [50].

If we use the error function defined in (5.26) then, in each step, the weights
are updated according to

�wk,h = ⌘ok�h, (5.27)

where �wk,h is the change of the weight between neuron k and h, ⌘ the learning
rate, usually a small number, and ok the output from neuron k. The term �h is
computed differently if the neuron is in a hidden layer, called inner neuron, or if
it is a neuron in the output layer, an output neuron. It is computed by

�h =

(
f 0
act(neth) · (th � yh) if h is an outer neuron,

f 0
act(neth) ·

P
l2L �lwh,l if h is an inner neuron,

(5.28)

where fact is activation function for the neuron, neth is input to neuron h, th
the desired output from outer neuron h, yh actual output from outer neuron h
and L the set of subsequent neurons in later layers. More about artificial neural
networks can be found in [50].
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5.3.2 Convolutional Neural Networks

A special type of neural networks that has been used a lot in later years in image
analysis are the convolutional neural networks. The input to these network is
often images and features are calculated by performing convolution with different
kernels.

The convolutional neural networks often consist of a number of stages. The
first stages consist of layers that perform convolution, subsampling or pooling
and non-linear transformations. The non-linear transformations correspond to
the activation functions in the neurons. The last stages consist of fully connected
layers, meaning that each neuron in the layer is connected to all neurons in the
previous layer, and finally classification layers. The structure of a neural network
is shown in Figure 5.9. The network in this example has an image as input and
three output neurons, so there are three possible output classes.

Figure 5.9: A deep convolutional network that classifies an image to one of
three classes. The first stages in the network consist of a convolutional layer
followed by a non-linear transformation and a pooling layer. The last stages are
classification layers. The meaning of the different layers will be described in the
following sections.

Convolutional Layers

The convolution of a certain layer in the network is performed with a number
of convolution kernels, where all kernels are three-dimensional. The width and
height of the kernels can be chosen but the depth of the kernel has to be equal
to the number of channels in the current layer. A layer consist of an image, or a
stack of images. Assuming that an image stack, I , is of size m1⇥n1⇥d1, then all
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convolution kernels are of size m2⇥n2⇥d1, where m2 and n2 are odd numbers.
Having d2 different kernels we can combine these to a four-dimensional kernel,
w, of size m2⇥n2⇥ d1⇥ d2. The result of the convolution will be a new image.
The convolution for a layer in the network can be defined as

(I ~ w) (i2, j2, k2) = f(i2, j2, k2)

=

aX

i1=�a

bX

j1=�b

d1X

k1=1

I(i2 � i1, j2 � j1, k1)w(i1, j1, k1, k2),

where (I ~ w) (i2, j2, k2) is the result of the convolution at position (i2, j2, k2)

in the new image. In the formula we set a = (m2 � 1)/2 so that it corre-
spond to half of the height of the kernel, rounded downwards. In the same way
b = (n2 � 1)/2 is about half of the width.

There are different ways to handle the convolution at the edges of the image,
one way is to only use the valid pixels, then we write the convolution as

(I ~ w) (i2 � a, j2 � b, k2) = f(i2, j2, k2), (5.29)

where 1 + a  i2  m1 � a and 1 + b  j2  n1 � b. In this case the resulting
image will be smaller than the input image.

Another way is to add zeros outside the image, this is called zero-padding.
The convolution in this case can be written as

(I ~ w) (i2 + a, j2 + b, k2) = f(i2, j2, k2), (5.30)

where 1� a  i2  m1 + a and 1� b  j2  n1 + b. In this case the resulting
image will be larger than the input image.

The convolution can be done using all images in the stack or on a smaller
subset of images. The size of the convolution kernels and how many images that
should be used in the convolution has to be chosen in advance but the weight are
set during the training of the network.

In a neural network the convolution corresponds to a weighted sum as a prop-
agation function were neurons correspond to pixels. The weights on the con-
nections correspond to the values in the convolution kernel. Figure 5.10 shows
the convolution of a small image with a single channel without zero-padding ex-
pressed as a neural network, the convolution in the image representation can be
seen in Figure 5.10a where the numbers in the input and output images represent
the numbers of the corresponding neuron in Figure 5.10b. Each neuron also has
a pixel value but those are not shown in the image.
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(a) Convolution of an image with a convolution kernel. The numbers
in the input and output images denotes the number of the correspond-
ing neuron in the network and not the pixel values.
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(b) Corresponding network with the same numbering as in (a).

Figure 5.10: The convolution of a 3⇥ 3 image with a 2⇥ 2 convolution kernel
shown as images and as two layers in a neural network.

Max-Pooling

To achieve spatial invariance it has been suggested to add subsampling layers after
the convolutional layers. The subsampling layer retrieve data from neighboring
neurons and combine it to one output signal. In [71] it was suggested to use max-
pooling layers instead of the subsampling layers. The max-pooling layers works
by taking the maximum of all neurons inside some window, the windows can be
overlapping or non-overlapping. A comparison between subsampling layers and
max-pooling layers was made in [77]. The authors showed that the max-pooling
layers outperformed subsampling layers and that it was no gain with overlapping
pooling widows.
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Activation Function

The most popular choice of activation function in deep neural networks is the
function f(x) = max(0, x), where x is the input to the neuron. It has been
shown in [51, 68] that using this as an activation function instead of the Fermi
function or the hyperbolic tangent makes the training of the network much faster.
A neuron with this rectifier function is called a Rectified Linear Unit, ReLU.

Dropout

A risk when training these networks is overfitting, this means that the model fits
the training data really well, but when testing on validation data that was not used
to build the model, the model does not perform well. One way to reduce the risk
of overfitting is to randomly omit parts of the training data or neurons in each
training step. This technique is known as dropout [35, 22].

Classification

The last layer in the network is a classification layer. The classification is done
by assigning the output neurons a number that represent the probability that the
image used as input to the network belongs to the class that the output neuron
represent.

The most popular way to compute the probabilities is with the softmax func-
tion [16], which is defined as

pi =
eqiPc
j=1 e

qj
, (5.31)

where pi is the probability that the input belongs to class i, qi is the input to
output neuron i and c is the number of output neurons or classes.
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Chapter 6

Gleason Grading

This chapter describes an automatic algorithm with the purpose to assist patholo-
gists to report Gleason score on malignant prostatic adenocarcinoma specimen. A
specific aim is to support intuitive interaction with the result, to let pathologists
adjust and correct the output. Therefore, we have designed an algorithm that
makes a spatial classification of the whole slide into the same growth patterns as
pathologists do. The described algorithm is a part of a larger project envisioning
a semi-automatic human-computer system that pathologists could use to increase
the efficiency and accuracy when reporting the Gleason grade, which implies that
both the resolution and the speed of the algorithms could be equally important as
the accuracy. In this chapter, we evaluate the overall accuracy on a set of images as
well as the accuracy when the images are divided into small patches, while keeping
in mind that we want to keep the processing time as low as possible.

The Gleason grading system is a widely used classification system of malignant
prostate adenocarcinomas based on the growth patterns of the cancer cell popu-
lation [23]. In the current revision from the 2005 consensus meeting [26], visu-
ally detectable malignant growth patterns are organized into three main groups
(3,4,5), which are summarized into overall scores based on patient outcome. The
meeting also recommended that benign patterns in group 1 and 2 should not
be reported separately. In the newly proposed revision [27], the same growth
patterns should be detected but are now organized into new overall scores. This
makes it possible to develop the same image analysis system for both revisions, by
just changing the way that the scores are summarized and grouped.

Automatic image analysis methods for Gleason grading have already been
proposed. Doyle et al. [25] described an approach using hand-crafted features
based mainly on detecting individual nuclei, whereas both Gorelick et al. [30]
and Jacobs et al. [41] used features derived from super-pixels. Another method
was proposed in [58] where histograms of SIFT-features were used to classify the
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images.

With the advent of deep learning techniques [3], it might be possible to reach
high classification accuracy without using hand-crafted features, since the features
can be derived during the training. One important technique is convolutional
neural networks (CNN), [39, 55]. These networks consist of multiple layers with
different functions. The first layer performs convolution on the different color
channels of the image, following layers consist of interleaved subsampling and
convolutional layers. A subsampling layer reduces the spatial resolution and a
convolutional layer combines information using different kernels. With each new
layer, a network of feature vectors that represent the images is produced. The
length and number of these vectors can either increase or decrease with each layer
depending on the design of the network.

In this chapter we used a pre-trained CNN, trained on a dataset consisting
of photographic images, and applied it on pathology images, similar to the idea
presented in [6]. For this purpose the classification step in the network was re-
moved and replaced with other machine learning techniques to classify the feature
vectors extracted from the network.

6.1 Material

During the development phase, self-annotated images generated by the TCGA
Research Network1, were used. The algorithm was then evaluated using cross-
validation on an independent set of images that was used by Lippolis [58]. The
images came from Beaumont Hospital in Dublin, Ireland and PathXL Ltd in
Belfast, UK and consisted of homogeneous single class images classified by one
or more pathologists. In total we had 52 images of benign glands, 52 images of
Gleason grade 3, 52 images of Gleason grade 4 and 57 images of Gleason grade
5. The images were scanned in 40x magnification, which were downsampled to
both 10x and 5x magnification to reduce the processing time and investigate how
the scale of the images affects the classification result. Some example images can
be seen in Figure 6.1. Figure 6.1a shows benign glands, Figure 6.1b Gleason score
3, Figure 6.1c Gleason 4 and Figure 6.1c Gleason 5.

1http://cancergenome.nih.gov/
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(a) Benign (b) Gleason 3

(c) Gleason 4 (d) Gleason 5

Figure 6.1: Some example images from the dataset.

6.2 Methods

The analysis method can be divided into three parts: Feature extraction, patch
classification, and whole image classification.

6.2.1 Feature Extraction

To extract the initial features, an pre-trained convolutional neural network, Over-
Feat, was used [78]. Overfeat is a 22-layer network in several stages. The first
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stages include convolutional layers followed by a piecewise linear function, de-
fined as f(x) = max(0, x), and, in some of the stages, max-pooling layers. Later
stages include fully connected layers and classification layer but these are not in-
teresting for our purpose. A summary of the first 5 stages in the fast version of
the network is shown in Table 6.1. The table shows the size of the windows used
for convolution and max-pooling. In the first two stages the convolution is per-
formed only on valid pixels, later stages use zero-padding. The last column shows
the length of the feature vectors that the different stages outputs.

Table 6.1: Summary of the first 5 stages in the OverFeat network, with the
window sizes used for convolution and max-pooling. The last column shows
the layer depth after each stage.

convoultion maxpool depth
stage 1 11⇥ 11 window, 2⇥ 2 window, 96

4⇥ 4 stride 2⇥ 2 stride
stage 2 5⇥ 5 window, 2⇥ 2 window, 256

1⇥ 1 stride 2⇥ 2 stride
stage 3 3⇥ 3 window (full), none 512

1⇥ 1 stride
stage 4 3⇥ 3 window (full), none 1024

1⇥ 1 stride
stage 5 3⇥ 3 window (full), 2⇥ 2 window, 1024

1⇥ 1 stride 2⇥ 2 stride

We have extracted features from both layer 9 and layer 16 corresponding to
the output from stage 3 and stage 5 respectively. In layer 9, a window of 87 ⇥ 87
pixels was used to compute the feature vector. A new feature vector was computed
for the square, 16 pixels to the right of the first one, a schematic image of this is
shown in Figure 6.2a. This way, we got several feature vectors representing the
image and each feature vector was represented by 512 features. The number of
feature vectors depends on the size of the input image. In layer 16, these windows
were larger, 167 ⇥ 167 pixels, with 32 pixels between the squares, see Figure 6.2b,
and the feature vectors consist of 1024 features each. The window size of layer
9 is approximately half of the size of the window in layer 16. This enables the
comparison of the effect depth while maintaining the same spatial resolution if
we feed the layer 9 version with a 5x image and the layer 16 version with a 10x
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image, see Figures 6.2a and 6.2c.

(a) Layer 9 in 5x (b) Layer 16 in 5x (c) Layer 16 in 10x

Figure 6.2: Window sizes, image magnifications, and step sizes used in our ex-
periments. Note that feature vectors in (a) and (c) covers the same spatial loca-
tion, and that (b) and (c) use the same window size.

6.2.2 Patch classification

Two different classifiers, Random Forest [14] and Support Vector Machines [21]
were used to classify the feature vectors obtained by OverFeat.

In Random Forest an ensemble of decision trees is trained from the training
data. Each tree uses a number of randomly chosen features to build the decision
tree. The classification result depends on the number of trees in the forest and the
number of features used.

In Support Vector Machines, SVM, a separating hyperplane that separates the
classes in the training set is found. A drawback of the SVM is that it is a binary
classifier, so it has to be modified to support multiclass classification. Here we
have used the one-versus-all strategy [38]. This is done by training four different
classifiers and combining them. First, we build a classifier for benign tissue versus
Gleason grade 3, 4 and 5, then another one for Gleason grade 3 versus benign
tissue and Gleason grade 4 and 5 and so on. To classify a new vector we look at the
distances between the separating hyperplane and the feature vector for all models.
In the classifier benign versus all other classes the vectors that were classified as
benign will have positive distances and the vectors that were classified as one of
the other classes will have negative distances. To classify a vector we compute the
distance to the separating plane for all models and choose the class that has the
largest positive distance to the plane. Different kernel functions can be applied to
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the data to make the SVM classifier non-linear.

6.2.3 Classification of whole images

The patch classification above classifies all individual vectors in the images, where
the vectors corresponds to patches of size 87 ⇥ 87 or 167 ⇥ 167 pixels. To classify
the whole image we let all patches in an image vote for the different classes and
the class with the highest number of votes is chosen.

6.3 Experiments

The proposed method was evaluated for different resolutions of the images, 5x
and 10x magnification. For 10x magnification, only features obtained from layer
16 were evaluated. For 5x magnification, features from both layer 9 and layer 16
were investigated. The area used to compute a feature vector in layer nine at 5x
magnification roughly corresponds to the area used to compute a feature vector
in layer 16 at 10x magnification.

We used 10-fold cross validation to evaluate the random forest and the sup-
port vector machines. The number of trees and the number of variables used was
optimized during the cross validation of random forest. Different kernel func-
tions were applied to the SVM classifier and the one with the lowest test error was
chosen. The kernel function that performed the best differs between different
experiments, but it is always either a first or second order polynomial. Figure 6.3
shows the mean training and mean test errors from the cross validation for dif-
ferent magnifications and layers. The plot shows the errors for the random forest
classifiers and the error for the best kernel functions of the support vector ma-
chines classifier. The training error is shown in blue and the test error in red.

Confusion matrices for the best classifier for the different magnifications and
layers are shown in Table 6.2 - 6.4. Table 6.2 shows the result for 10x magni-
fication and layer 16, Table 6.3 the result for 5x magnification and layer 9 and
Table 6.4 the result for 5x magnification and layer 16.

For the binary classification of benign tissue versus cancerous tissue we dis-
covered a true positive rate of 94.5 % and a false negative rate of 5.5 % using
Table 6.3.

Figure 6.4 shows the training and test errors for different magnifications and
layers when whole images were classified. The plot shows the errors for the ran-
dom forest classifiers and the error for the best kernel functions of the support
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RF SVM RF SVM RF SVM

training error
test error

10x magnification
layer 16

5x magnification
layer 9

5x magnification
layer 16

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

Figure 6.3: Training and test error per small patch for both random forest and
support vector machines for different magnifications and layers. Some of the
training errors are very close to zero which could be an indication of overfitting.

Table 6.2: Confusion matrix for 10x magnification, layer 16, classified with
support vector machines. The matrix shows the classified patches. The overall
error is 33.2 %.

estimated class
benign 3 4 5

true class

benign 4812 843 665 511
3 1440 2167 1635 1126
4 474 738 4579 1361
5 269 438 778 9097

vector machines classifier. The training error is shown in blue and the test error
in red.

Confusion matrices for the best classifier for the different magnifications and
layers when whole images were classified are shown in Table 6.5 - 6.7. Table 6.5
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Table 6.3: Confusion matrix for 5x magnification, layer 9, classified with sup-
port vector machines. The matrix shows the classified patches. The overall error
is 18.9 %.

estimated class
benign 3 4 5

true class

benign 3987 632 194 78
3 716 2620 696 353
4 213 636 4099 306
5 58 239 176 7772

Table 6.4: Confusion matrix for 5x magnification, layer 16, classified with ran-
dom forest. The matrix shows the classified patches. The overall error is 28.1 %.

estimated class
benign 3 4 5

true class

benign 774 50 45 38
3 178 244 178 154
4 56 82 539 278
5 23 29 81 1493

shows the result for 10x magnification and layer 16, Table 6.6 the result for 5x
magnification and layer 9 and Table 6.7 the result for 5x magnification and layer
16.

Table 6.5: Confusion matrix for 10x magnification, layer 16, classified with
random forest. The matrix shows the classified images. The overall error is
20.7 %.

estimated class
benign 3 4 5

true class

benign 52 0 0 0
3 9 26 5 12
4 0 5 37 10
5 0 0 3 54

For the binary classification benign tissue versus cancerous tissue in whole
images we discovered a true positive rate of 96.3 % and a false negative rate of
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RF SVM RF SVM RF SVM

training error
test error

10x magnification
layer 16

5x magnification
layer 9

5x magnification
layer 16

5 %

10 %

15 %

20 %

25 %

30 %

35 %

Figure 6.4: Training and test error per whole image for both random forest and
support vector machines for different magnifications and layers. Also here some
of the training errors are very close to zero.

Table 6.6: Confusion matrix for 5x magnification, layer 9, classified with sup-
port vector machines. The matrix shows the classified images. The overall error
is 10.8 %.

estimated class
benign 3 4 5

true class

benign 52 0 0 0
3 4 40 3 5
4 2 6 42 2
5 0 0 1 56

3.7 % using Table 6.6.
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Table 6.7: Confusion matrix for 5x magnification, layer 16, classified with sup-
port vector machines. The matrix shows the classified images. The overall error
is 26.8 %.

estimated class
benign 3 4 5

true outcome

benign 47 4 1 0
3 7 24 14 7
4 4 8 34 6
5 0 3 3 51

6.4 Conclusions and Future Work

As a first step towards a semi-automatic tool for analyzing prostate biopsies we
have presented a method to automatically classify images into benign tissue and
Gleason score 3-5. The framework perform with an accuracy of 81.1 % when
analyzing small patches of the image, retaining the spatial resolution of the clas-
sification. When classifying entire images the accuracy was 89.2 %. This level of
accuracy is on the same level as previous work, but without using hand-crafted
features or other pre-processing of the images. In the future, it would be very
interesting to see if a network trained on pathologiy images could perform even
better.
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Chapter 7

Preliminaries on Tracking and
Reconstruction

Given two or more two-dimensional images of the same object taken from dif-
ferent positions, a three-dimensional model of the object can be created. The
process of getting the 3D position of a point given its location in the images is
called triangulation. How the object is projected into the images depends on the
rotation and position of the cameras, often those parameters has to be estimated
as well.

To be able to reconstruct an object we need corresponding points in the im-
ages. Corresponding points are images of the same 3D point in the different
images. There exist many methods for identifying point correspondences from
two or more images. Usually a point is described by some kind of descriptor that
looks in a neighborhood around the point. By doing the same for detected points
in another image a correspondence can be found by comparing the descriptors.
A very well know descriptor is the SIFT descriptor described in [59]. Some other
interest point detectors are SURF [7], FAST [75] and BRISK [57]. If the change
between the images is very small, for example if two consecutive frames from a
video is used as input images, the problem of finding tentative correspondences
can be solved using tracking of interest points. In this chapter such a tracking
algorithm is presented together with a description of a camera model.

7.1 The Pinhole Camera

A very simple camera is the pinhole camera. In the pinhole camera, the rays from
the object passes through a small hole and hits a photosensitive plate, where an
image of the object is created. All rays hitting the plate go through the hole,
which is therefore called the focal point or the camera center. The plate where
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the image is created is called the image plane and lies on a distance f from the
focal point. The equation of the image plane is z = f and the distance f is called
the focal length. Figure 7.1 shows a model of a pinhole camera. In the model,
the image plane lies in front of the camera. Placing the image plane in front of
the camera center is equivalent to placing it behind the camera center. The point,
X is a point in space, a 3D point. The image point, x, is where the ray from
the 3D point to the focal point intersects with the image plane. C is the camera
center or focal point. The principal axis goes through the camera center and is
perpendicular to the image plane. The principal point, p is where the principal
axis hits the image plane.

X

x

pC

f

z

xy

Figure 7.1: A model of the pinhole camera with the image plane in front of the
camera. The distance between the camera and the camera center is called the
focal length of the camera. The point x in the image plane where the 3D point
X is pictured is called an image point. The principal axis of the camera is
perpendicular to the image plane, goes through the camera center and hits the
image plane at the principal point p.

The coordinates of the image point can easily be calculated from similar tri-
angles. The 3D point has the coordinates (X,Y, Z) and the image point has
the coordinates (x, y, f), where the last coordinate can be omitted. In the case
where the principal point is in the origin of the image coordinate system, the
x-coordinate of the image point can be calculated with help of similar triangles as

x

f
=

X

Z
) x =

fX

Z
. (7.1)

In the same way, the y-coordinate can be calculated as

y =

fY

Z
. (7.2)
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In the usual case, when the principal point is not in the origin of the image,
the image point becomes

(x, y) =
⇣
fX
Z + px,

fY
Z + py

⌘
, (7.3)

where px is the x-coordinate of the principal point and py is the y-coordinate.
If the image point and the 3D point are expressed in homogeneous coordi-

nates, that is x =

�
x y 1

�T and X =

�
X Y Z 1

�T , the image point
can be expressed with a matrix multiplication

�x =

0

@
Zx
Zy
Z

1

A
=

0

@
f 0 px 0
0 f py 0
0 0 1 0

1

A

| {z }
P

0

BB@

X
Y
Z
1

1

CCA . (7.4)

P is called the camera matrix and the equation above is called the camera equa-
tion. The scalar � is the depth of the point, which is the distance along the z-axis
from the camera center to the 3D point. Using vector notation the equation can
be written as

�x = PX, (7.5)

where both x and X are in homogeneous coordinates.
The camera matrix can be decomposed to

P = K
�
I 0

�
, (7.6)

where I is the identity matrix and K is called the calibration matrix and is given
by

K =

0

@
f 0 px
0 f py
0 0 1

1

A . (7.7)

The calibration matrix contains the internal parameters of the camera matrix, such
as the focal length and the principal point. The full calibration matrix also holds
two more parameters, s and �. The parameter s is called the skew parameter and
is zero for most cameras. The aspect ratio, � models the width and height ratio of
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the pixels. For most cameras, the pixels are square and then � is one. Including
both the skew and aspect ratio in the calibration matrix it becomes

K =

0

@
f sf px
0 �f py
0 0 1

1

A . (7.8)

The camera matrix in (7.6) is in the camera coordinate system, the camera
center is in the origin and the 3D point is expressed in a coordinate system with
the z-axis pointing from the camera perpendicular to the image plane. If the
camera center is not in the origin and the camera is rotated relative to the world
coordinate system, the camera matrix becomes

P = KR
�
I �C

�
, (7.9)

where R is an orthogonal matrix expressing the rotation of the camera and C is
the camera center.

The camera equation, �x = PX , can then, with X in cartesian coordinates,
be written as

�x = KR
�
I �C

�✓X
1

◆
. (7.10)

The image point is then calculated by

�x = KR (X �C) , (7.11)

where x is in homogeneous coordinates and X is in cartesian coordinates. For a
more detailed derivation of the camera matrix see [34].

7.2 Kanade-Lucas-Tomasi Tracker

Tracking is a way to find corresponding points in images. In tracking we have
a sequence of images, for example a movie where the difference between two
consecutive frames is fairly small. By finding an interesting point in one image
the corresponding point in the next image is found by looking in a small area
around the position of the point in the first image. By just looking at a single
pixel it is not possible to determine if it is the same pixel in the next image, it
could easily be confused with adjacent pixels. Instead of tracking single points
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windows of pixels, a small patch of the image, are tracked. One of the most
popular tracker is the Kanade-Lucas-Tomasi tracker, known as the KLT-tracker,
presented in [82]. The KLT-tracker uses the method presented in [60] to track
window from one frame to the next. It also present a novel way to select features
in the image that could be tracked to the next frame.

7.2.1 Tracking

A sequence of images can be written as a function I(x, y, t) where x and y are
space variables and t is the time. If two images are taken closely after each other,
the function I(x, y, t) has to satisfy

I(x, y, t+ ⌧) = I(x+ ⇠, y + ⌘, t), (7.12)

where ⌧ is the time delay between the pictures, ⇠ and ⌘ are displacements in the
x and y direction respectively. The vector d = (⇠, ⌘) denotes the total displace-
ment.

In real world this relation is almost always violated, so we have to allow some
error. We set J(x) = I(x, y, t + ⌧) and I(x � d) = I(x + ⇠, y + ⌘, t). Then
we can write J as

J(x) = I(x� d) + n(x), (7.13)

where n(x) denotes noise.
Our goal is to find the displacement vector, d, that minimizes the residual

error over the given window, W . This error is given by

✏ =

ZZ

W

(I(x� d)� J(x))2 w dxdy, (7.14)

where w is a weighting function. The weighting function could for example be
constant or a gaussian that emphasizes the central part of the image patch.

In the KLT-tracker this problem has been solved by using the linearization
method that was suggested in [60]. For small displacements we can estimate
I(x� d) by its taylor series around x truncated by the linear term. This approx-
imation is given by

I(x� d) ⇡ I(x)� gTd, (7.15)
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where g = rI(x) is the gradient of the image.
Then we can write the error residual as

✏ =

ZZ

W

�
I(x)� gTd� J(x)

�2
w dxdy =

ZZ

W

�
h� gTd)

�2
w dxdy,

(7.16)

where h = I(x)� J(x) is the difference between the two images.
The minima can be found in closed form by taking the derivative with respect

to d and set it to zero. Then we get
ZZ

W

�
h� gTd

�
gw dxdy = 0. (7.17)

Since
�
gTd

�
g = g

�
gTd

�
=

�
ggT

�
d and d is assumed to be constant on

the window W we can rewrite this as
0

@
ZZ

W

ggTw dxdy

1

Ad =

ZZ

W

hgw dxdy. (7.18)

If we set G to be the symmetric 2⇥2 matrix given by G =

RR
W ggTw dxdy

and e to be the 2 ⇥ 1 vector given by e =

RR
W hgw dxdy we can write this as

the linear equation system

Gd = e. (7.19)

The displacement d is the vector that solves the linear equation system.

7.2.2 Finding Good Features

For the tracking algorithm to work well it is necessary that the window that is
tracked contains sufficient information. Many other papers suggest to use points
like corner points or points with high spatial frequency content. The approach
suggested in [82] define a good feature to track if the displacement vector can be
reliable computed. The equation system in (7.19) can be solved in a reliable way if
the matrix G is well-conditioned and above the noise level. Since G is symmetric,
the condition number of G is given by

(G) =

����
�max

�min

���� , (7.20)
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where (G) is the condition number, �max is the larger of the two eigenvalues of
G and �min the smallest. The matrix is well-conditioned if the condition number
is low.

In order for G to be above the noise level, both of the eigenvalues need to be
large. At the same time two eigenvalues can not differ too much for G to be well-
conditioned. In practice it is enough to look at the smallest of the two eigenvalues
since there is an upper limit for the eigenvalues. The upper limit exist since there
is an upper limit for the pixel values. This implies that the matrix will be both
well-conditioned and above noise level, and therefore a good window to track, if

min(�max,�min) > �, (7.21)

where � is a pre-defined threshold. By computing the eigenvalues for areas with
approximately uniform intensities, a lower bound for � was obtained. An upper
bound was found by looking att the eigenvalues of areas at corners or rich texture.
A value in the middle of the interval was chosen.
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Chapter 8

Tracking and Reconstruction of
Vehicles

To reduce the number of road traffic injuries it is important to know how safe
certain roads and intersections are. There are different ways to evaluate this. The
classic method is to count the number of accidents that occurs. Since accidents
are rare it can take years to get a good assessment of safety this way. A faster
approach is to predict the numbers of accidents that will happen by manually
observing certain events, conflicts, during a much shorter time period [40]. This
is done by letting trained personnel study video of the intersection. Naturally, this
is very expensive and time-consuming and an automated method would be very
beneficial.

This chapter introduce a new way to estimate the position of a vehicle in an
intersection by tracking the vehicles in a movie, build models of the vehicles and
then estimate the pose of the vehicles in all frames. The work in this chapter is
based on the work in our article [44].

8.1 Related Work

In [53] a method for automated surveillance was proposed. To calculate the posi-
tion of a vehicle, the 2D image of that vehicle was projected onto the road plane.
If the camera can be placed right above the intersection, this will work rather
well. In most cases though, this is not possible. The projection of the vehicle gets
stretched out and the estimated position incorrect. A better way to estimate the
position would be to make a three-dimensional representation of the object and
use this to calculate the position of the vehicle. This is the approach considered
in this chapter.

There is much work in the vision literature regarding traffic scenes. In [56] a
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system for tracking pedestrians and cars was presented, which is based on object
detectors. A system for making 3D shape reconstruction for traffic surveillance
with multiple cameras is presented in [65]. To do this, predefined 3D models of
cars are used. In [20] vehicles was tracked by tracking feature points on it. After
the features exit the tracking region, they are grouped into discrete vehicles using
a motion constraint. In [88] a system for automatic calibration of a camera from
traffic scenes was proposed. If the height of the camera is known, both intrinsic
and extrinsic parameters can be found. A method to rectify images is given in [8].
By tracking the motion of two vehicles moving in constant speed an estimation
of the ground plane can be done.

The approach described in this chapter differs from most methods in at least
one important aspect. Inspired by recent research in optimal methods for com-
puter vision, the reprojection errors are minimized with respect to the L1-norm
rather than the more common L2-norm. This makes it possible to find the global
optimum and it also makes it easier to impose extra constraints, such as the fact
that vehicles are only moving in the ground plane.

8.2 Overview

We start with captured video from the intersection. For the reconstruction we
need to find corresponding points between different frames. This is achieved in
the following way. Every few frames, we pick an image to use as a starting image.
In this image a corner detector is used to find strong corner points. These points
are then tracked a few frames using a KLT tracker [82], to get corresponding
image points in a later frame.

To reduce the amount of outliers in the 3D reconstruction, we need to detect
which points belong to the same vehicle. For this purpose we perform a motion
segmentation algorithm that will be described in detail in Section 8.4.1. This
algorithm finds all vehicles that are visible in the starting frame. The vehicles are
then tracked both forwards and backwards in time until the vehicles leaves the
camera field of view or until the tracking fails.

This procedure yields long tracks of corresponding image points likely to be-
long to the same vehicle. From these tracks we use a few views to perform our
3D reconstruction, which is described thoroughly in Section 8.4.2. The scale is
fixed by assuming that some reconstructed points lie in the ground plane. Hav-
ing a 3D model we use this to estimate the pose of the vehicle in all views, see
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Section 8.4.3. This gives us accurate information on the movement of the vehicle
throughout the sequence. Section 8.5 described how the same framework can be
used to estimate the camera rotation with respect to the ground plane. The idea
is to do this once when the system is set up.

System Overview
1. Track points between frames.
2. Cluster points from the same vehicle.
3. Reconstruct the vehicle using a few views.
4. Compute the vehicle pose in all views.

8.3 Preliminaries

We assume that the ground is planar and that the vehicles are rigid bodies that
only moves in that plane. We choose coordinate system, such that the z-axis is
perpendicular to the ground. We also assume that the camera has known internal
parameters. In reality we have one stationary camera and moving vehicles, but
from the vehicles point of view it look like the camera is moving. Choosing this
point of view, we can assume stationary vehicles and multiple cameras.

8.3.1 Structure from Motion with Known Rotations

If the rotation between the different cameras are known we can solve the structure
from motion problem with multiple cameras optimally with respect to the L1-
norm, using second-order cone programming [42]. This gives us the translation
of the cameras and the position of the 3D points. An advantage of this approach is
that several views are used to estimate the 3D points, unlike the standard approach
that gets initial estimates from only two views.

Due to noise there is no exact solution to the reconstruction problem. Thus
we allow the reprojected points to deviate somewhat from the measured image
points. To get linear constraints, we allow the reprojected point within a small
square around the measured image point. This differs from the approach in [42].
The simplification allows us to solve the optimization using linear programming
rather than second-order cone programming.

The square has side length 2", where " is the tolerated error, and is defined
by four lines in the image plane, see Figure 8.1a. These lines are the intersections
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between the image plane and planes going through both the camera center and
the image plane. The planes through the camera center form a generalized cone
in which the 3D point has to be. A bigger value on " results in a wider cone. For
every camera, we get another cone constraint on the position of the 3D point.
The constraints from two views can be seen in Figure 8.1b.
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(a) Constraints in the plane.
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X

(b) Constraints in space.

Figure 8.1: Linear constraints in the image plane and in space. (a) shows the
lines that define the box in which the reprojected point must lie inside. (b)
shows constraints in space from two cameras, the 3D point must lie inside both
cones.

If we express the 3D point in cartesian coordinates we can write the camera
equation on the form

�x = KR (X � t) , (8.1)

where � is the depth of the point, x the image point in homogeneous coordinates,
K the camera calibration matrix, R the rotation of the camera, X the 3D point
in cartesian coordinates and t is the camera center. For calibrated cameras we can
exclude the calibration matrix and get

�x = R (X � t) . (8.2)

From each one of the lines in Figure 8.1a we get constraints on the form, lTx  0,
where l is the equation of the line and x is the image point in homogeneous
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coordinates. Using the camera equation in (8.2) we can rewrite the constraints to

lT
1
�
R (X � t)  0. (8.3)

The depths has to be positive if the point is visible in the camera, therefore we can
eliminate the depth from the equation. If we set a = lTR we get

a (X � t)  0, (8.4)

defining a plane through the camera center and the image plane as shown in
Figure 8.1b.

For every 3D point there are four inequalities per camera, one for each plane.
We collect all these inequalities into a matrix

Au  0, (8.5)

where A holds the coefficients and u holds the unknowns, consisting of the
3D points and the camera centers. Checking if there exists a solution that ful-
fills all constraints for a fixed error tolerance " is a linear programming feasibility
problem. To find the minimal " we can use bisection.

A weakness of this approach is that it is sensitive to outliers. One way to get
around this is to use auxiliary variables, as described in [69]. To each row of (8.5)
we add a variable si � 0, yielding

aT
k x  si. (8.6)

There is one si for each measured image point. For example, if we have five views
with ten image points in each view we get 50 auxiliary variables. Ideally we would
like as many si’s as possible to be zero, but since this is a very hard optimization
problem we try to minimize the sum instead. This turns the convex feasibility
problem in (8.5) into a convex optimization problem,

(
minimize

P
si

subject to Au  Ps,
(8.7)

where P is a matrix picking the relevant si.
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8.3.2 Minimal Solver

This section presents a method to calculate the rotation and translation between
two frames. The method is minimal in the sense that it requires a minimal num-
ber of correspondences. Assuming planar motion and known camera rotation
with respect of the ground, we need two pairs of corresponding points.

For all cameras we have same rotation, R0, with respect to the ground and
we can rewrite the camera equation (8.1)

�x = KR0Rz (X � t) , (8.8)

where Rz is the rotation around the z-axis.
Using normalized image points u = RT

0 K
�1x we get

�u = Rz (X � t) . (8.9)

For the first camera we set both the rotation around the z-axis and the trans-
lation to zero, getting the simpler relations,

�kuk = Xk, for k = 1, 2, (8.10)

where u1 and u2 are the two image points.
For the second camera we let �1 and �2 denote the depths and use v1 and v2

for the image points. We get

�kR
T
z vk = (Xk � t) , for k = 1, 2. (8.11)

Since we are dealing with planar motion the translation is zero in the z-direction,
so t = (tx, ty, 0)T . The rotation, Rz , is given by a single rotation angle, ✓.

If we know all four depths, �1, �2, �1 and �2, we can calculate the 3D points
from (8.10) and the rotation and translation from (8.11). Hence, one way to
solve the problem is to determine the depths. First note that the depth �k can be
expressed in �k using the z-component of equations (8.10) and (8.11). We get

Xkz = �1ukz = �1vkz and �k =

ukz
vkz

�k. (8.12)

To calculate the ratio between �1 and �2 we use the geometry of the scene.
The scene seen from above is showed in Figure 8.2. For each camera we get one
triangle with corners in the camera center and the two 3D points.
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Figure 8.2: The scene seen from above.

The two triangles share the side x and the length of this side can be calculated
from either of the triangles using the law of cosine. That gives us the equation

�2
1 |u1|2 + �2

2 |u2|2 � 2�1�2 |u1| |u2| cos↵ =

= �2
1 |v1|2 + �2

2 |v2|2 � 2�1�2 |v1| |v2| cos�, (8.13)

where ↵ is the angle between the two vectors u1 and u2, being the image points
from the first camera. In the same way � is the angle between vectors v1 and v2

of the second camera.
By setting �1 to 1 we fixate the scale. Then we have three unknown depths

and three equations. Inserting (8.12) into (8.13) yields an equation of second
degree that gives us up to two real solutions for the depths.

For each of these solutions we calculate the rotation and translation. This
is done by solving the linear equation system below. From (8.11) we have four
unused equations,

8
>><

>>:

�1 (av1x + bv1y) = X1x � tx,
�1 (�bv1x + av1y) = X1y � ty,
�2 (av2x + bv2y) = X2x � tx,
�2 (�bv2x + av2y) = X2y � ty,

(8.14)

where a = cos ✓ and b = sin ✓.

8.4 Tracking and Reconstruction

To do the reconstruction we have to find corresponding image points in the dif-
ferent frames in the video. To get that we find interest points in one frame and
track those points to the following frames. Then we cluster the points so that
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points in one cluster belongs to the same vehicle. When we have corresponding
image points for a vehicle we use a few frames to do a 3D reconstruction. The
reconstruction is then used to calculate the pose for all frames.

8.4.1 Tracking

To detect vehicles in the video, we start by finding interest points in one frame
somewhere in the sequence. Then we track these points a number of frames
using a KLT-tracker [82]. To separate points on stationary objects from points on
moving objects we remove all points that has not moved between the first and the
last frame. For the rest of the points we perform a motion segmentation algorithm
to find out which points belongs to the same vehicle. For all the vehicles found in
the scene the feature points are tracked until the vehicle leaves the scene. When
all vehicles in the scene are found we choose another frame later in the sequence.
This is repeated until we come to the end of the video.

The motion segmentation algorithm works by choosing two image points
from two images, the first and the last image. From these two points the rotation
and relative translation between the frames are calculated using the minimal solver
from Section 8.3.2. The minimal solver requires that the rotation of the camera
with respect to the ground is known. Depending on the number of real solutions
for the equation of second degree in (8.13) the solver returns up to two solutions
for the rotation and translation. For these solutions the rotation and translation
are used to create two camera matrices per solution, one for each view. The camera
matrices are calculated by

P 1 = KR0 (I|0) and P 2 = KR0Rz (I|� t) , (8.15)

where K is the camera calibration matrix, R0 is the camera rotation with respect
to the ground, Rz is the rotation around the z-axis between the frames and t is
the translation.

The camera matrices are then used to triangulate all image points to get the
positions of the 3D points in space, the triangulation is done with the method
proposed in [33]. The 3D points are then reprojected with both cameras

�ˆxi = P iX, (8.16)

where ˆxi is the reprojected image points for view i and X are the 3D points.
The reprojection errors, "ij = kxij � ˆxijk2, are measured for all points in both
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views. Points, j, that have a small reprojection error in both views, "1j < "t and
"2j < "t, are classified as inliers and are likely to belong to the same vehicle. The
number of inliers is counted for the different rotations and translations and then
two new image points are chosen. The algorithm is then repeated for all pair of
image points and the number of inliers for all possible solutions are counted. The
solution that gives the highest number of inliers is chosen.

The points classified as inliers are then tracked with the KLT-tracker until the
vehicle leaves the scene. Points that fails to be tracked are removed. First we track
the points from one frame to the next and then back again, points that do not
return to the original position are removed. We also remove points which comes
too close to the edge of the image. We stop the tracking when there are no points
left. To get longer tracks we start by following the vehicle forward in time, from
the starting frame to the following frames until the vehicle drives away. Then we
go back to the starting frame and follow the vehicle backwards in time, from the
starting frame to previous frames until the vehicle disappears.

The points classified as inliers in this estimation are removed, and the mo-
tion segmentation algorithm is restarted to search for more vehicles. The motion
segmentation algorithm is repeated until there are too few points left.

Since we choose new starting frames at short intervals we typically get several
tracks of the same vehicle. To avoid reconstructing the same vehicle more than
once, we try to detect this by comparing the position of the image points in the
different tracks. Tracks where the positions for some image points coincide with
image points in other tracks for corresponding frames are likely to represent the
same vehicle.

For a frame in the first track, the corresponding frames are found in the fol-
lowing tracks. The image points are compared between the different tracks, and
if any image points coincide the tracks are merged together.
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Tracking
The first frame in the video sequence is chosen as starting
frame
1. Detect interest points.
2. Track the points a number of frames and remove points

that do not move.
3. Find points belonging to the same vehicle by performing

the motion segmentation algorithm.
4. Track the vehicle, until it leaves.
5. Remove points classified as inliers.
6. Repeat step 3-5 until there are too few points left.
7. Choose a new starting frame, a few frames after the previ-

ous starting frame.
8. Repeat step 1-7 until the end of the video is reached.

8.4.2 Reconstruction

After the tracking algorithm we have tracks of corresponding image points from
that the vehicles enter the camera field of view until the vehicles leave. We will
use a few of these views, typically 10, to make a 3D reconstruction of the vehicles.

First we have to know the rotation between the frames we have chosen. Still
the vehicles only rotate around the z-axis and we can use the minimal solver
from Section 8.3.2 to calculate the rotations for consecutive views. The rotations
are calculated in the same way as in the motion segmentation. We calculate the
rotation for two points at a time, then all points are triangulated and reprojected.
This is done for all pairs of points and we choose the rotation that gives the highest
number of inliers.

Knowing the rotation we can use the method from Section 8.3.1 to compute
the reconstruction. To avoid translation ambiguity we fixate the position of the
first camera. We also know that the vehicles do not translate in the z-direction.
Then we can fixate the z-coordinate for all cameras, we also assume that the cam-
era is placed above the vehicles and we set a upper limit of the z-coordinate for
all 3D points. This limit we set somewhat lower than the height of the cam-
era. Then we solve the optimization problem in (8.7). For the points that are
inliers the value of the corresponding si will be very close to zero while outliers
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have much higher value of the corresponding si. To remove outliers we remove
3D points where the corresponding si is higher than some small threshold for all
views.

Now we have a reconstruction of the vehicle, but the scale is still unknown.
For surveillance purposes it is important that the scale is consistent with respect
to the other reconstructed vehicles. To achieve this we consider the point in the
vehicle model that has the lowest z-coordinate. Assuming that this point is close
to the ground, we choose the scale such that this point gets z-coordinate equal to
zero.

8.4.3 Pose

When we have both the correspondences between frames for the vehicle and a 3D
reconstruction of it, we can calculate the position of the vehicle by calculating the
camera pose for all views. If the rotation of the camera is known we can calculate
the pose with the method presented in Section 8.3.1, though now we just have
one camera and we know the position of the 3D points. Hence we just have to
calculate the position of a camera, significantly reducing the number of unknown
variables.

To find the rotation of the camera we perform a branch and bound search
through rotation space. The branch and bound algorithm is described in detail
in Section 8.5, where it is used for a larger search space. In pose estimation, we
only have to perform the rotation search in one dimension since we already know
the rotation of the camera with respect to the ground and only want to find the
rotation around the z-axis.

To handle outliers, we use the following scheme. We choose some of the
points on the vehicle at random, typically half of the points, and calculate the
pose using the chosen points. All 3D points are then projected with the estimated
camera and the number of inliers is counted. This procedure is repeated a number
of times with different points and the rotation that gives the highest number of
inliers is chosen. Then the pose is calculated again using all points that were
classified as inliers.

8.5 System Calibration

In all previous sections we assumed that the camera rotation with respect to the
ground was known. To calibrate the system we need to find this rotation. This
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is done by choosing a few views of some vehicle, preferably a big one, with corre-
sponding image points, without outliers. For this vehicle a 3D reconstruction is
calculated, at the same time we get the rotations and translations of the cameras.

To find the rotations between the different views we perform a branch-and-
bound search, similar to that in [32]. The parameterization of the rotation is
shown in Figure 8.3. The camera is first rotated around the z-axis, then around
the x0-axis and at last around the z0-axis and the total rotation can be written as
R = Rz0Rx0Rz,, where R is the total rotation and Rz0 , Rx0 and Rz are the
rotations around the z0-, x0- and z-axes respectively.

z´x´

z
yx

C

Figure 8.3: Rotation of the camera, the camera is first rotated around the z-axis,
then around the x0-axis and at last around the z0-axis.

We choose coordinate system, such that the z-axis is perpendicular to the
ground plane. This means that vehicles rotate only around the z-axis and thus
Rz0 , Rx0 are equal for all views. They specify the orientation of the ground plane
relative to the camera. The rotation around the z-axis for the first camera can be
chosen to be zero. Each of the angles can be chosen between -⇡ and ⇡. Thus our
search space can be identified with the product space [�⇡,⇡](N+1), where N is
the number of cameras.

The branch and bound algorithm is initiated with a list containing one block,
[�⇡,⇡](N+1) as well as an initial error threshold ". At each iteration, we pick a
block from the list and try to determine if this block can contain any solution with
reprojection errors < ". This is determined by solving an LP feasibility problem
as described in Section 8.3.1 but with error tolerance " + � instead of ". The
� is an extra uncertainty that accounts for the size of the block. Details can be
found in [43].
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If this test falls out positive, then the block is divided and the new blocks
are added to the list. Otherwise it is simply deleted. This continues until the
remaining set of rotations is small enough.

Branch-and-bound Algorithm
Iterate until desired precision is reached.
1. Pick the first block from the list.
2. Calculate the constraints and set up the LP problem.
3. Determine if there is a solution to the LP problem.
4. If there is a solution.

- Divide the block into smaller blocks and add them
to the list.

- Try to update the error threshold by performing the
bisection algorithm.

5. Remove the current block from the list.

8.5.1 Bisection

In Section 8.3.1 we showed how to check feasibility for a fixed error tolerance ".
To find the L1 optimal solution we also need a method to update this tolerance.
This is done with a bisection algorithm. For blocks that pass the feasibility test
we try to find a solution having a smaller reprojection error. We fix the rotations
to the middle of the block and perform a feasibility test with error tolerance ". If
this passes we know that we have found a better solution. To know how good, we
use bisection.

We start with the interval [0, "]. Let � = "/2 and check feasibility with
error tolerance �. If this is feasible we know that the best reprojection error is
somewhere between 0 and � and we set the upper bound to �. If there is not
a solution, we set the lower bound to � instead. The interval is now half the
length of the original interval. Again we try to find a solution in the middle of the
interval and change either the upper or the lower bound. This is repeated until
the interval is as short as desired. Finally we update the error threshold.

119



Chapter 8. Tracking and Reconstruction of Vehicles

8.6 Experiments

The presented methods were evaluated on real-world data. The captured video
has a resolution of 320 ⇥ 240 pixels and is around 10 minutes. The following
sections describe the different parts of the evaluation.

8.6.1 Motion segmentation

To illustrate how the motion segmentation algorithm works, one frame from the
video was selected. In this frame interest points were detected and tracked for
a couple of frames. Figure 8.4a shows the first and last image with the image
points marked with yellow dots. After removing stationary points, the points
in Figure 8.4b remained. The result from the motion segmentation is shown in
Figure 8.4c, the green dots are points belonging to the first vehicle and the red
dots are points belonging to the second vehicle.

Figure 8.4: Illustration of the motion segmentation algorithm. (a) interest
points in the first and last frame, (b) static points removed and (c) points af-
ter the motion segmentation, the green points belong to one of the vehicles and
the red points to the other vehicle.
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8.6.2 Tracking

To evaluate the tracking algorithm, we manually counted the number of vehicles
in the entire video sequence to get the ground truth. We also noted in which
direction the vehicles are driving. There are 16 ways to pass through the inter-
section. Next we calculated the number of vehicles that the tracking algorithm
found and compared this number with the ground truth. The results are shown
in Table 8.1. For some of the directions the tracking algorithm finds most of the
vehicles. For other, the tracking algorithm fails more often. In the cases where
the tracking algorithm works well, the vehicles drive closer to the camera, which
gives fairly well resolution of the vehicles. Vehicles that drive far away is harder
to track since they are very small. The KLT-tracker has to be able to track points
on the vehicle for a number of frames for it to be detected, and when it fails, they
will not be detected.

Table 8.1: Comparison between the real number of vehicles and the number
the tracking algorithm finds. Each row represent one of the 16 different ways to
pass through the intersection.

turn ground truth tracking
1 34 32
2 120 30
3 0 2
4 0 0
5 25 17
6 17 17
7 8 12
8 0 0
9 32 21
10 102 63
11 27 6
12 1 0
13 12 6
14 13 7
15 15 0
16 0 0
tot 406 213
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8.6.3 Reconstruction and Pose

The reconstructions of the vehicles are made according to Section 8.4.2 and the
pose for the vehicles in all frames where the vehicles are visible is calculated as in
Section 8.4.3. For all frames, the L1-norm of the reprojection errors is calculated,
that is the largest of the reprojection errors. Table 8.2 shows a summary for 20
vehicles. The reprojection errors are coordinate-wise and measured in pixels, the
resolution of the images is 320⇥ 240 pixels. The number of points used to do the
reconstruction varies between vehicles and the number of points used to calculate
the pose varies between frames.

Figure 8.5 shows three frames for which the pose of the vehicles has been
calculated. The dots representing image points on the different vehicles have
different colors.

Figure 8.5: Three frames from the video. The pose for the three vehicles has
been calculated for the frames where the vehicles are visible.

The 3D reconstruction of the vehicles and their relative position is shown in
Figure 8.6. The points numbered with number 1 represent the frame to the left
in Figure 8.5, the points numbered 2 represent the middle frame and points with
number 3 represent the frame to the right.

Next, the 3D points were projected onto the ground plane to estimate the
positions of the vehicles in the intersection, the result can be seen Figure 8.7. The
positions can be compared with the images in Figure 8.5.

Finally the pose of the vehicles has been calculated for all frames where they
are visible. Figure 8.8 shows the projection of the vehicles for all frames.

122



8.6. Experiments

Table 8.2: Reprojection errors for 20 of the vehicles in the intersection, the table
displays the largest, smallest and mean value of the L1 reprojection errors. The
errors are measured in pixels and the resolution of the images is 320 ⇥ 240
pixels. The number of points varies between vehicles and frames.

L1 error L1 error L1 error
vehicle worst frame best frame mean

1 4.10 1.54 2.87
2 3.28 1.03 1.92
3 4.33 1.99 2.82
4 3.66 0.73 2.22
5 3.44 1.28 2.29
6 4.69 0.96 1.86
7 2.56 0.21 1.40
8 3.81 1.03 1.53
9 3.63 0.83 2.08

10 3.08 0.68 1.57
11 4.69 0.67 1.82
12 2.32 0.74 1.64
13 4.04 0.32 2.45
14 3.85 0.43 2.11
15 4.02 1.46 3.00
16 2.86 0.19 0.82
17 4.03 1.06 1.86
18 3.02 0.74 1.57
19 4.39 1.25 2.68
20 4.38 1.07 2.60

8.6.4 Calibration

To estimate the camera rotation with respect to the ground plane, three images
of a bus driving through the intersection were used. Figure 8.9 shows the images
used, while the result of the reconstruction can be seen in Figure 8.10.

Now it is possible to create a map of the intersection by rectifying an image
using the estimated ground plane. This map was used to produce the images
in Figures 8.7 and 8.8. The accuracy of this estimation should give us a rough
quality measure.
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Figure 8.6: 3D reconstruction and pose for three frames in the video. Different
colors represent different vehicles.

Figure 8.7: Projection of the 3D points into the ground plane to show the
position of the vehicles. The positions for three different time points are shown.
Like before different colors represent different vehicles.

By comparing distance in the rectified image and a real map of the intersec-
tion, we can estimate the size of the bus. The height was estimated to 2.65 m,
the width to 2.15 m and the length to 12.7 m. The bus is 2.8 m high, 2.3 m
wide and 12 m long, giving us an average error of 0.3 m. That is significantly
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8.7. Conclusions

Figure 8.8: Same as Figure 8.7 but the positions for all time points are shown.
Points above the crosswalk are removed during the tracking algorithm.

Figure 8.9: Three images of a bus driving through the intersection. The yellow
dots mark the image points which were used for the reconstruction and the
yellow lines show the boundaries of two sides of the bus.

better than the approach in [53] of simply projecting a segmented object onto the
ground which in this case would give an error of several meters.

8.7 Conclusions

We presented some ideas on how to achieve accurate 3D reconstructions for traffic
surveillance. The approach builds on recent research in optimal methods for com-
puter vision. This makes it possible to fully exploit restrictions such as the ground
being planar. The approach requires only one camera, which means that no syn-
chronization between cameras is needed. Moreover, the camera position with
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Figure 8.10: Reconstruction of the bus driving through the intersection at three
time points. The tracked points used for the reconstruction are marked as well
as some lines used for visualization. The blue bus corresponds to the first time
point, the red one to the second and the green to the third.

respect to the ground can be estimated automatically as described in Section 8.5.
Altogether the system is accurate, yet easy to set up and these are characteristics
that should be attractive to many traffic scientists.
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Populärvetenskaplig sammanfattning 
Hur kan vi använda oss av bildanalys för att förbättra våra vägar? Kan vi genom bildanalys hjälpa patologerna att hitta 
avvikelser i biopsier? Går det att mäta hur farlig en korsning är genom att bevaka den med övervakningskameror? Detta 
är tre frågor som den här avhandlingen försöker svara på. Genom att använda oss av matematiska algoritmer kan vi analy-
sera bilder för att lösa just de här problemen 

Del 1 - Bildanalys för asfaltslaboratorier 
När man bygger vägar vill man såklart att vägen ska hålla 
så länge som möjligt och där spelar kvaliteten på asfalten 
en stor roll. Asfalt består av stenar av olika storlek och av 
ett bindemedel som ska hålla ihop stenarna. Detta 
bindemedel kallas bitumen. För att inte stenarna ska loss-
na från varandra är det viktigt att vidhäftningen mellan 
bituminet och stenarna är så bra som möjligt. Detta un-
dersöks med den så kallade rullflaskmetoden. I rull-
flaskmetoden lägger man stenar som man har täckt med 
bitumen i en flaska med vatten och låter den snurra på ett 
rullbord. Detta gör att en del av bituminet lossnar och 
efter en stund plockar man ut stenarna från flaska och 
försöker uppskatta hur mycket av stenen som fortfarande 
är täckt av bitumen, alltså täckningsgraden. Detta är 
väldigt svårt att göra manuellt, därför har vi försökt att 
använda oss av bildanalys för att göra denna uppskattning. 

Detta är ett förhållandevis lätt problem då färgen på ste-
nen skiljer sig markant, men vad gör man om stenen är 
väldigt mörk och är väldigt likt bitumen? Det som ändå 
skiljer bitumen från sten är att bituminet reflekterar ljus 
på ett helt annat sätt en stenen. Dessa reflexer kan vi ut-
nyttja för att bedöma var det finns bitumen. Genom att ta 
flera bilder med ljus från olika håll kan vi bedöma om det 
bildas reflexer, i så fall är en pixel mörk då ljuset inte re-
flekteras men väldigt ljus när det bildas en reflex. 

En annan sak man undersöker på laboratoriet är om re-
ceptet för asfalten har följts då vägen tillverkades. Receptet 
säger hur mycket av varje storlek av stenarna man ska ta. 
För att undersöka detta kan man borra ett litet hål i vägen, 
du får man fram en liten asfaltspuck. Denna puck analy-
seras genom att man löser upp bituminet i metylenklorid, 
sedan siktas stenarna genom en serie spaltsiktar av olika 
storlek och andelen som fastnar vid varje sikt uppmäts. 
Tyvärr är metylenklorid väldigt giftigt och inte så 
miljövänligt och därför vill man helst inte använda det. 
Istället har vi sågat sönder puckarna och tittat på snitten 
för att uppskatta storleksfördelningen. Detta görs i ett par 

steg. Först identifieras stenarna i provet, vilket betyder att 
vi tar bort bakgrunden som är bitumen. Sedan anpassar vi 
rektanglar till alla stenar för att kunna bestämma bredden 
på stenarna. När vi vet bredden på alla stenar i provet kan 
vi enkelt beräkna storleksfördelningen. 

Del 2 - Cancerdetektion 
En annan fråga som tas upp i avhandlingen är om bild-
analys kan hjälpa patologer att på ett effektivt sätt ställa 
diagnos på histopatologiska bilder. En mycket vanlig can-
cerform är prostatacancer, och en stor mängd prostata-
biopsier behöver analyseras av en minskande mängd pa-
tologer. Det patologerna tittar på är växtmönstret på kört-
larna i vävnadsprovet. Beroende på hur växtmönstret ser 
ut graderas provet på den så kallade Gleasonskalan. Man 
försöker också uppskatta hur stor del av provet som består 
av de olika Gleasongraderna. I den här avhandlingen har 
vi tittat på ett delproblem och försökt avgöra automatiskt 
vilken Gleasongrad ett litet urklipp av bilden har. Detta 
har vi gjort genom att plocka ut väldigt generella egen-
skaper i bilderna, som till exempel kanter i bilden. Dessa 
egenskaper samlas sedan ihop i en lista och genom att 
jämföra dessa listor med varandra kan vi avgöra vilken 
grad av cancer vi har. Än så länge kan vi inte göra detta 
lika bra som en patolog, men i framtiden är tanken att 
patologen skulle kunna få hjälp med att hitta områden 
som innehåller cancer och göra en förklassificering som 
sedan kan kontrolleras och godkännas av en patolog. 

Del 3 - Trafikövervakning 
Den sista delen av avhandlingen handlar om att följa bilar 
i en korsning. Genom att filma bilarna i korsningen med 
en statisk kamera får vi många tvådimensionella bilder av 
bilarna. Dessa bilder kan vi sedan använda för att göra 
tredimensionella rekonstruktioner av fordonen. Detta görs 
genom att vi plockar ut intressanta punkter i en bild, det 
kan vara hörn i bilden eller liknande, dessa punkter följs 
sedan till nästa bild. Genom att analysera hur punkterna 
flyttat sig mellan bilderna kan vi bestämma var i rummet 
punkterna befinner sig. Detta är sedan tänkt att användas 
för att beräkna var i korsningen fordonet befinner sig vid 
varje tidpunkt och om bilar kommer farligt nära varandra. 

En sten delvis täckt av bitumen. Hur stor del är täckt?

En bild på en buss och motsvarande 3d-modell
137


