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FOREWORD 
It has been known for long that concrete has a certain possibility to heal defects like cracks 

that appear during production or during service. Early studies showed that considerable 

restoration of strength can occur also in severely cracked concrete specimens. However, just 

as important, or even more important, is the potential ability of concrete to heal and thereby 

seal cracks from ingress of chloride ions.  

 

In concrete rules of today the restrictions as regards crack width are strict for concrete 

exposed to sea water or de-icing salt. Often the maximum allowed crack is only 0.2 mm or 

even smaller. In order to cope with these requirements a large amount of reinforcement 

serving as crack distributor is often needed which causes big costs.  

 

A research project was proposed with the aim of investigating to what extent healing of cracks 

of different width and at different concrete cover can occur in normal Swedish concrete 

exposed to different types of water; salt, brackish and pure. Funding was granted by the 

Development Fund of the Swedish Construction Industry (SBUF), Vattenfall Research and 

Development AB and SKANSKA Project Support AB. We are grateful for their support. 

 

The project is divided in two parts: 

 Part 1: Exposure during 1 year before analysis of healing 

 Part 2: Exposure during 2 years before analysis of healing 

 

This report presents the results of Part 1. 

 

Planning of the practical parts of the exposure tests in our laboratory and execution of these 

tests were performed by our colleagues Bo Johansson and Bengt Nilsson. We thank them for 

their interest in and contributions to the project. 

 

Analyses of mineral components precipitated in the cracks and analyses of chloride ingress in 

the cracks were performed at the Swedish Cement and Concrete Institute in Stockholm by 

Mariusz Kalinowski and Leif Fjällberg. We thank them for fine work. 

 

 

Lund, November 2010 

 

 

Göran Fagerlund                                                             Manouchehr Hassanzadeh 
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SUMMARY 
The aim of the project was to find out if cracks in concrete exposed to water can heal so that 

chloride ingress in the crack is effectively obstructed.  If this is the case it might be possible to 

accept wider cracks in concrete than is allowed today. 

  

18 concrete specimens with induced cracks, 0.2 and 0.4 mm wide, were exposed to sea water, 

brackish water and tap water for 1 year. For most specimens the crack width has been locked 

mechanically. For four specimens the crack had the possibility to relax.  

 

Two types of water exposure have been used: 

 Permanent immersion  

 Cyclic immersion and drying in lab air 

 

Photographs were taken of the crack before and after exposure. Photos are shown in 

APPENDIX 1 and 2.  The photographs indicate that some healing has occurred, particularly 

for specimens permanently immersed in sea water. The effect of relaxation seems to be 

marginal. 

 

After terminated exposure the chloride content in the crack walls on different depths was 

determined. The chloride content diminishes with the crack depth which indicates that the 

precipitation of minerals in the crack has the ability to somewhat obstruct chloride ingress. 

There was no big difference between cracks 0.2 mm and 0.4 mm wide or between locked and 

relaxed cracks. 

 

SEM-EDS analyses of precipitations in the cracks showed that these mainly consisted of 

calcium hydroxide crystals of various size, and sometimes calcium carbonate crystals 

(calcite). In sea water needle-like sulphur containing crystals (e.g. ettringite) were frequent. 

For concrete that was exposed to cycles of sea water and drying magnesium hydroxide 

crystals (brucit) were found.  

 

This report presents the results of part 1 of the project. In part 2 specimens will be exposed in 

sea water for about somewhat more than 2 years (28 months). 
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1. SELF-HEALING 
Defects in concrete can heal more or less completely when it is exposed to high moisture 

level. Such self-healing, or autogenous healing, has been known for long time. An early 

review is given in Lauer&Slate (1956). According to these authors one of the first to report on 

the phenomenon was the well-known American concrete expert Duff Abrams (1913). Most of 

this early research, also the report by Lauer&Slate, dealt with the effect of autogenous healing 

on strength.  

 

The effect of self-healing on strength depends on the following main factors: 

 The initial crack width; smaller cracks seem to heal more completely in a given time 

than wide cracks. 

 The extent of damage; specimens that are completely broken into separate pieces do 

not heal as much as specimens that still have a certain cohesiveness after damage. 

 Pressure applied to the crack; cracks exposed to pressure heal more effectively in a 

given time than stress-free cracks. The extent of healing is bigger the higher the 

pressure. 

 The moisture content; specimens stored in water heals more effectively than concrete 

that is exposed to high relative humidity. Dry concrete does not heal. 

 The time in water after damage; the longer the storage time, the more effective the 

healing. 

 

According to Dhir et al. (1973) complete restoration of compressive strength can occur in 

cement mortar specimens that are severely fractured (but not to complete failure) by high 

compressive load and then cured for some months at 953% RH.  Also specimens that were 

fractured a second time, after the first healing, restored its compressive strength almost 

completely after some months curing. 

 

In tests performed by Lauer&Slate (1956) cement paste specimens were completely fractured 

in tension. The one-axial tensile strength of un-fractured specimens was obtained for 

hydration times from 1 to 90 days. Specimens fractured at 1 day were healed in water or 95% 

RH and then fractured in direct tension once again after 7 days, 28 days and 90 days.  

Specimens fractured at 7 days were healed and re-fractured at 28 and 90 days. Specimens 

fractured at 28 days were healed and re-fractured at 90 days. Some specimens were re-

fractured two times. During healing the two pieces of each fractured specimen were held 

together by a rubber band. The results showed that a certain healing occurred, but that it was 

much smaller than what has been observed for compressive strength. The maximum healing, 

about 25%, was obtained for specimens fractured at 1 day and re-tested at 90 days. Healing 

performed at 95% RH gave much smaller effect; the maximum healing was only about 4%. 

 

The fact that through cracks in structures exposed to one-sided water pressure can heal has 

been known for long time. A well-established repair technique is to dry the downstream face 

so that lime precipitates in the crack opening thereby stopping the water flow. Extensive 

experimental work on healing of cracks with regard to permeability has been performed by 

Edvardsen (1996, 1999). An example from her work is shown in Figure 1.1. It shows flow 

through specimens with one single crack parallel to water flow at the water pressure 0.025 

MPa (2.5 m hydraulic head). Complete healing is obtained after about 200 hours for the crack 

width 0.10 mm. Also cracks with 0.20 and 0.30 mm width heal almost completely within 

about 30 days. 
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Figure 1.1: Influence of crack width and time on water flow under pressure;  

                  Edvardsen (1996). 

 

Reports on the effect of healing of cracks with regard to chloride diffusion are scarce. 

Nordström (2005) exposed pre-cracked steel fibre reinforced concrete to salt spray from a 

Swedish highway. The exposure time was 5 years (5 winters) and the crack width was 0.1, 0.5 

and 1 mm. Some results from measurements of the total chloride content on depths 2 mm to 4 

mm from the crack wall, on different depths from the crack mouth, are shown in Figure 1.2. 

There is no clear certain tendency of reduced chloride content with increased depth in the 

crack. The chloride content on 45 mm depth varies between about 0.05 and 0.15 % of the 

cement weight. This can be compared with the chloride content on the same depth in un-

cracked concrete, which is less than 0.02 % of the cement weight. Thus, chloride penetration 

in the crack is considerably higher. It must be noted that the specimens were exposed to 

seasonal variations in chloride and moisture exposure. Therefore, chloride can diffuse both 

inwards and outwards within the crack. 

 
 

Figure 1.2: Chloride content in the crack wall after 5 winter exposure to salt spray from a    

                   Swedish highway. Effect of the crack width. Nordström (2005). 

 

The following main mechanisms behind autogenous healing have been suggested: 

 Continued hydration of the cement. The hydration products enter the crack and might 

eventually fill this completely. This effect ought to be most active when cracks appear 

early after production when there is still a large amount of un-reacted cement. 

 Precipitation of CaCO3 (calcite) by reaction of calcium ions in the pore solution with 

carbonate ions dissolved in the crack water. 

The second mechanism is often claimed to be the major mechanism behind self-healing.  
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2. AIM  
The aim of the project is: 

 to investigate, visually and experimentally, the amount and type of precipitations in 

the crack after long-term exposure in different types of water (sea, brackish or pure).   

 to investigate the effect of crack-healing on the ingress of chloride ions in cracks of 

different width when healing takes place in the presence of  sea water or brackish 

water. 

 

The ultimate aim is to investigate if the present rules as regards maximum tolerable crack 

widths in salt environment are reasonable, or if the crack width can be increased without 

increased risk of reinforcement corrosion.  

 
 
3. THE CONCRETE 
Only one type of concrete was used in the investigation. It has the following characteristics: 

 

 Cement type: Swedish portland cement with low alkali, high sulphate resistance, 

moderate heat of hydration. The cement is marketed under the name 

Anläggningscement and is the main cement used in Swedish bridge building since 

about 25 years. The cement was also used for the Öresund bridge. The cement 

characteristics are shown in Table 3.1.  

 water/cement ratio: 0,40. This value is, since many years, used in Sweden for concrete 

under severe exposure to sea water or de-icing salt. 

 Concrete composition: The mix proportions are shown in Table 3.2. 

 

Table 3.1: Cement characteristics 

Property Value 

Type according to EU and Swedish Standard CEM I 42,5N BV/SR/LA 

C3S 53% 

C2S 25% 

C3A 2% 

C4AF 13% 

(Na2O)equiv (soluble) 0,4% 

Filler content 0% 

Specific surface 320 m
2
/kg 

Strenth 

   1 day 

   28days 

 

10 MPa 

54 MPa 

 

Table 3.2: Mix characterisics 

Ingredient Value 

w/c-ratio 0.40 

cement 440 kg/m
3
 

water 176 kg/m
3
 

gravel 0-8 mm 1120 kg/m
3
 

stone 8-12 mm 630 kg/m
3
 

superplastiziser (melamine) 0,9 kg/m
3
 

cube strength at 28 days 84 MPa 
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The curing procedure was as follows: 

 1:st day: Specimens stored in mould, covered by plastic foil 

 2-14 days: Stored in lime-saturated water 

 Day 14: Crack “fabricated”; see chapter 5. 

 Day 14: Placed in different baths; see chapter 8.  

 Exposure in bath for 375 to 385 days 

 

 

4. SPECIMENS 
Specimens 150 mm wide, 200 mm high and 300mm long were cast in a mould with plywood 

sides and bottom. Each end of the mould was made of two stainless steel tubes with 

rectangular cross-section welded together to form a beam with width 150 mm and height 320 

mm. At the lower part of each steel beam holes were made for two threaded stainless steel 

rods which were cast into the concrete. These rods were used for transferring to concrete the 

tensile force occurring in the beam during bending of the specimen used for inducing the pre-

crack. 

 

At the top of each steel beam two holes were made for fastening two threaded stainless rods 

which were used for maintaining the initial crack width during the test. 

 

Two ribbed reinforcement bars with diameter 12 mm were fixed in the mould so that a certain 

cover (55 or 75 mm) counted from the bottom side was obtained. 

 

A steel strip 3 mm wide and 3 mm thick was fixed on the bottom of mould at its mid-section. 

Its function was to create a notch in the specimen which was used for localizing the crack 

during bending. 

 

A drawing of the specimen is shown in figure 4.1. Figure 4.2 and 4.3 show photos of the 

specimen directly after casting and after de-moulding. 

 

 

 
 

Figure 4.1: Specimen seen from the side and cross-section. 
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Figure 4.2: Specimen directly after casting. 

 

 

 

 

 

 

 

 

 

Figure 4.3: Specimen after de-moulding. 

 

In total 34 specimens were cast. 18 of these were tested after 1 year exposure. The other 16 

specimens will be tested after about 28 month exposure. In this report results for specimens 

stored for 1 year are given. 
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5. PRE-CRACKING 
A crack initiating at the bottom of the specimen was produced in the specimen when this was 

2 weeks old. The specimen was placed in a test machine on two supports designed in such a 

way that no twisting of the specimen could occur. Thereby, the crack width would be the 

same on both sides of the specimen. Two Linear Variable Displacement Transducers (LVDT)  

were mounted on the bottom surface. They were supported by screws mounted on cast-in nuts 

on both sides of the notch. Figure 5.1 shows the bottom surface with cast-in nuts. 

 

 
Figure 5.1: Cast-in nuts for mounting two extensometers across the notch. 

 

Pressure was applied on the upper surface of the specimen at its mid-section. A crack was 

induced at the notch. Pressure was increased until the extensometers indicated that the crack 

mouth opening aimed at was reached (0,2 or 0,4 mm). Then, the nuts on the upper threaded 

bars was tightened and locked by another nut so that the crack was locked. When the pressure 

was released it was controlled that the crack maintained its initial width and that no relaxation 

of the crack occurred. 

 

In one test series the cracks were allowed to relax. Therefore, the crack opening was not 

locked. 

 

The test arrangement is shown in figure 5.2. 

 

 
Figure 5.2: Test assembly for creating a crack in the specimen. 
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6. CRACK WIDTH 
Two widths of the crack opening were used: 

 0.2 mm 

 0.4 mm 

 

0.2 mm is the biggest crack accepted in the Swedish concrete standard for concrete exposed to 

sea water or de-icing salt. The crack width 0.4 mm was used for most of the specimens. 

 

7. PHOTOGRAPHY OF CRACKS BEFORE EXPOSURE 
Photos were taken of the crack before it was sealed, i.e. before the concrete placed in the bath. 

5 to 8 photos were taken along the crack on each side of this. Each photo covered about 12 

mm of the crack length. Examples of photos of two cracks are shown in figure 7.1. 

 

 
Figure 7.1: Photography of cracks before exposure. 75 mm cover. cm-scale indicated. 

    Left: Crack width 0.4 mm (specimen H75-4-1-1 left side). 

    Right: Crack width 0.2 mm (specimen H75-2-1-1 left side).  
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8. SEALING OF CRACKS 
After taking photos of the crack and before placing the specimens in the bath, the sides of the 

specimens were sealed by moisture impermeable aluminium tape which extended 75 mm on 

each side of the crack. The seal was made in two steps, see figure 8.1: 

 Step 1: an inner 5 cm wide “silver-tape” which was used to avoid soiling the concrete 

surface by the outer bituminous tape so that undisturbed photos of the surface could be 

taken after exposure. 

 Step 2: an outer 15 cm wide aluminium tape coated on the inside by a thick 

bituminous sticky layer.  

 

Sealing was made in order to avoid ingress of water or salt water from the crack sides. All 

ingress had to be one-directional along the crack. 

 
 

Figure 8.2: Sealing of the sides of the crack. 

 

In one test series (Series 5) also the crack mouth was sealed in the same manner. Thus, water 

or salt could not enter the crack from outside, neither from the bottom nor, from the sides. 

 

 

9. WATER USED FOR EXPOSURE OF SPECIMENS 
3 types of water were used for exposure of the specimens: 

 Sea water collected from the west-coast of Sweden. The salt content is 24 gram per 

litre and the chloride ion content 13 gram per litre.  

14 specimens were exposed. 

 Brackish water collected from south Baltic Sea. The salt concentration is 8 gram per 

litre. The chloride ion concentration is 4.4 gram per litre.  

2 specimens were exposed. 

 Ordinary tap water.  

2 specimens were exposed. 

 

The basins used for storage of the specimens were covered by plastic lids. The water level 

was measured regularly and evaporated water was replaced by additional water so that the salt 

concentration remained constant. 

 

 
 
 

A                                                    A

A-A

Outer aluminium tape with bituminous layer (glue)

50

150 Inner ”silver tape”
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10. WATER EXPOSURE 
Three types of water exposure were used: 

 Type 1: Permanently stored under water. The specimens were completely covered by 

water during one year. A basin with specimens is shown in figure 10.1. 

 Type 2: Cyclic. 1 week immersed in water followed by 1 week in lab air. In total 25 

cycles. 

 Type 3: One-sided capillary suction. The specimens were turned upside down and the 

un-cracked upper surface immersed some millimetres in water. Drying occurred from 

the bottom “crack side”. The specimens were stored in this way during one year. A 

basin with specimens is shown in figure 10.2.  This type of exposure will go on for 2 

years. Therefore, no results will be published in the present report. 

 

 

 
Figure 10.1: Water exposure type 1; permanently under water. 

 

 

 
Figure 10.2: Water exposure type 3: Capillary suction from the un-cracked top side. 
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11. TEST SERIES - VARIABLES 
Test series 1: Sea water from the Swedish west-coast 
Variables: 

 Crack width; 0.2 and 0.4 mm 

 Concrete cover: 55 and 75 mm 

 Exposure type: 1 and 2 

 Non-relaxed crack 

 Open crack mouth 

Crack width  

(mm) 

Concrete cover  

(mm) 

Exposure 

Type 1; immersed Type 2; cyclic 

0.2 55 H55-2-1-1
1)

 H55-2-2-1 

75 H75-2-1-1 H75-2-2-1 

0.4 55 H55-4-1-1 H55-4-2-1 

75 H75-4-1-1 H75-4-2-1 

8 specimens 
1)

 Specimen label 

 

 

Test series 2: Brackish water from the Baltic Sea 

Variables: 

 Crack width: 0.4 mm 

 Concrete cover: 55 and 75 mm 

 Exposure type: 1 

Crack width  

(mm) 

Concrete cover  

(mm) 

Exposure 

Type 1; immersed 

0.4 55 S155-4-1-1-Ö 

75 S175-4-1-1-Ö 

2 specimens 

 

Test series 3: Tap water 

Variables: 

 Crack width: 0.4 mm 

 Concrete cover: 55 and 75 mm 

 Exposure type: 1 

Crack width  

(mm) 

Concrete cover  

(mm) 

Exposure 

Type 1; immersed 

0.4 55 S155-4-1-1-R 

75 S175-4-1-1-R 

2 specimens 
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Test series 4: Relaxed crack 

Variables:  

 Sea water from the Swedish west-coast 

 Crack width: 55 mm 

 Exposure type: 1 and 2 

Crack width  

(mm) 

Concrete cover  

(mm) 

Exposure 

Type 1; immersed Type 2; cyclic 

0.4 55 H55-4R-1-1 H55-4R-2-1 

2 specimens 

 

Test series 5: Sealed crack opening 

Variables: 

 Crack width: 0.2 and 0.4 mm 

 Concrete cover: 75 mm 

 Exposure type: 1 and 2 

Crack width  

(mm) 

Concrete cover  

(mm) 

Exposure 

Type 1; immersed Type 2; cyclic 

0.2 75 S275-2-1-1 S2-75-2-2-1 

0.4 75 S275-4-1-1 S2-75-4-2-1 

4 specimens 
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12. PHOTOGRAPHS OF CRACKS AFTER EXPOSURE 
After about one year exposure the crack seal was removed. Thereafter photos of the cracks 

were taken in the same manner as before exposure. Examples of photos are given in figure 

12.1 which shows the same cracks as are shown before exposure in figure 7.1. There is a clear 

indication of a certain healing, particularly of the thinner crack.  

 

 
 

Figure 12.1: Photographs of cracks after exposure. The same specimens as in figure 7.1. 

    Left: Crack width 0.4 mm (specimen H75-4-1-1 left side). 

    Right: Crack width 0.2 mm (specimen H75-2-1-1 left side).  
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More photos of cracks in the lower part (1 to 3 or 4 cm from the crack tip) for all 18 

specimens are given in APPENDIX 1. In each picture, comparison is made of the crack before 

and after exposure. For each specimen both sides of the crack are shown. 

 

Magnifications of photos of the lowest part of the crack after 1 year exposure are shown in 

figure 12.2-12.11 for 10 specimens. Only one side of the specimens are shown. The other side 

is similar to the side shown.    

 

 
Figure 12.2: 0.2 mm crack after 1 year permanent immersion in sea water.  

                   Test series 1, specimen H75-2-1-1. 

 

 
Figure 12.3: 0.4 mm crack after 1 year permanent immersion in sea water. 

                   Test series 1, specimen H75-4-1-1. 
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Figure 12.4: 0.2 mm crack after 1 year cyclic immersion in sea water and drying.  

                   Test series 1, specimen H75-2-2-1. 

 

 
Figure 12.5: 0.4 mm crack after 1 year cyclic immersion in sea water and drying.  

                   Test series 1, specimen H75-4-2-1. 
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Figure 12.6: 0.4 mm relaxed crack after 1 year permanent immersion in sea water.  

                   Test series 1, specimen H55-4R-1-1. 

 

 
Figure 12.7: 0.4 mm relaxed crack after 1 year cyclic immersion in sea water and drying.  

                   Test series 1, specimen H55-4R-2-1. 
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Figure 12.8: 0.4 mm crack after 1 year permanent immersion in pure water.  

                   Test series 3, specimen S175-4-1-1-R. 

 

 
Figure 12.9: 0.4 mm crack after 1 year permanent immersion in brackish water.  

                   Test series 2, specimen S175-4-1-1-Ö. 
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Figure 12.10: 0.4 mm sealed crack after 1 year permanent immersion in sea water. 

                     Test series 5, specimen S275-4-1-1. 

 

 
Figure 12.11: 0.4 mm sealed crack after 1 year cyclic immersion in sea water and drying.  

                     Test series 5, specimen S275-4-2-1. 
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The following observations are made: 

 Figure 12.2-12.3: At permanent immersion in sea water there are clear visual 

indications of a certain healing at the bottom of the crack, also for the crack width     

0.4 mm. 

 Figure 12.4-12.5: At cyclic immersion and drying the healing seems to be smaller than 

at permanent immersion, especially for the crack width 0.4 mm.  

 Figure 12.6-12.7: There seems to be no bigger healing for relaxed cracks compared to 

the non-relaxed 0.4 mm cracks, cf. figure 12.2-12.3. 

 Figure 12.8-12.9: There are no signs of self-healing of 0.4 mm cracks at storage in tap 

water but small signs of healing at storage in brackish water. 

 Figure 12.10-12.11: When the crack mouth is sealed there are no visual signs of self-

healing. 

 

Magnified photos of cracks on about 3 cm depth from the crack opening for the same 

specimens as above are shown in APPENDIX 2. The following observations are made: 

 Figure A2.1-A2.2: Permanent immersion: Visually, certain healing of 0.2 mm crack. 

No healing of 0.4 mm crack. 

 Figure A2.3-A2.4: Cyclic immersion and drying: No healing of cracks visible. 

 Figure A2.5-A2.6: Relaxed 0.4 mm cracks: Certain healing observable both for 

permanent immersion and cyclic immersion and drying. 

 Figure A2.7-A2.8: Brackish water and tap water: No signs of healing of 0.4 mm 

cracks in tap water but slight indication of healing in brackish water. 

 Figure A2.9-A2.10: Sealed crack mouth: No signs of healing at permanent immersion 

but indications of certain healing at cyclic immersion and drying. 
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13. DRILLING OF CORES AFTER EXPOSURE 
After terminated exposure a 10 cm core was drilled centrically in the specimen from its 

bottom side along the crack. Drilling was made with water-cooled drill. An example of the 

specimen after drilling is shown in figure 13.1.  An example of a drilled-out core is shown in 

figure 13.2. 

 

 
Figure 13.1: Example of a specimen after the core has been drilled out. 

 

 

 
 

Figure 13.2: Example: core drilled out from specimen S1-75-4-1-1-R (75 mm cover, crack  

                     width 0.4 mm, permanently exposed to pure water).  

                     Photo: Kalinowski&Fjällberg (2010). 

 

After drilling, the cores were immediately wrapped in plastic foil and sent to the Swedish 

Cement and Concrete Research Institute (CBI) for testing. 
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14. ANALYSIS OF MINERALS AND CHLORIDE CONCENTRATION IN CRACK  
      WALLS 
The cores were investigated at the Swedish Cement and Concrete Research Institute (CBI) in 

Stockholm. The following investigations were made: 

 Composition and morphology of minerals precipitated in the crack on three different 

depths from the crack mouth (5, 25 and 55 mm). 

 Concentration of chloride ions in the outermost 5 mm of the crack wall on four 

different depths from the crack opening (5-10, 15-20, 25-30 and 35-40 mm).  

 

Location of the test areas are shown in figure 14.1.  

 

 
 

Figure 14.1: Core and places where samples were taken from the crack walls. 

 

All test results have been published in a report by Kalinowski & Fjällberg (2010). Results 

from this report are presented below. 

 

14.1 Mineral composition of precipitations in cracks 
Each area in which mineral analysis was made had an area of at least 10 mm

2
. 

 

Minerals (individual crystals) precipitated in the crack surface was investigated by SEM 

equipped with back scattered electron detector (BSE) and energy dispersive X-ray 

spectroscope (EDS). Results from the EDS analyses were recalculated to oxides. 

 

SEM-photos of precipitations in the crack for specimens stored permanently in sea water are 

shown in Figure 14.2. SEM photos for specimens permanently stored in brackish water or tap 

water is shown in Figure 14.3 and 14.4. SEM photos for specimens cyclically exposed to sea 

water and drying in air are shown in figure 14.5. 
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Figure 14.2: SEM-photos of precipitations in cracks for specimens exposed permanently in  

sea water. Photos: Kalinowski & Fjällberg (2010). 

Upper row: Cover 55 mm. Crack 0.2 mm. Specimen H55-2-1-1. 

Left: Depth 5 mm. Right: Depth 55 mm.  

Middle row: Cover 55 mm, Crack 0.4 mm.  

Left: Specimen H55-4-1-1.Depth 55 mm.  

Right: Specimen H55-4R-1-1. Relaxed crack. Depth 5 mm. 

Lower row: Cover 75 mm. Crack 0.2 mm. Specimen S275-2-1-1. Sealed crack  

Left: Depth 5 mm. Right: Depth 55 mm. 
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Figure 14.3: SEM-photos of precipitations in cracks for specimens exposed permanently in   

                     brackish water. Photos: Kalinowski & Fjällberg (2010). 

  Cover 55 mm. Crack width 0.4 mm. Specimen S155-4-1-1-Ö. 

  Left: Depth 5 mm. Right: Depth 55 mm. 

   

  
Figure 14.4: SEM-photos of precipitations in cracks for specimens exposed permanently in 

tap water. Photos: Kalinowski & Fjällberg (2010). 

Cover 55 mm. Crack width 0.4 mm. Specimen S155-4-1-1-R. 

Left: Depth 5 mm. Right: Depth 55 mm. 
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Figure 14.5: SEM-photos of precipitations in cracks for specimens exposed to cyclic    

immersion in sea water and drying. Photos: Kalinowski & Fjällberg (2010). 

Upper row: Cover 55 mm. Crack 0.2 mm. Specimen H55-2-2-1. 

Left: Depth 25 mm. Right: Depth 55 mm.  

Middle row: Cover 55 mm, Crack 0.4 mm. Specimen H55-4-2-1.  

Left: Depth 5 mm. Right: Depth 55 mm. 

Lower row: Cover 55 mm. Crack 0.4 mm. Specimen H55-4R-2-1. Relaxed crack  

                     Left: Depth 5 mm. Right: Depth 55 mm. 
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Types and composition of different precipitated compounds in the cracks of 10 specimens are 

described in APPENDIX 3. The following compounds were frequently observed on all depths 

from 5 to 55 mm: 

 Big plate-like Ca(OH)2-crystals and smaller cubic Ca(OH)2-crystals. 

 Needle-like crystals composed of the elements aluminium, silicon, sulphur and 

calcium; probably ettringite or other sulphur-containing compound. 

 Brucit (Mg(OH)2). This was mainly observed in specimens exposed to cyclic exposure 

(Table A3.2). 

 

In the report Kalinowski&Fjällberg (2010) the following statements are made: 

 “Precipitations on crack walls were observed in all specimens.” 

 “The precipitations consist of very fine-graded and thin coatings on the crack walls. 

Moreover, bigger crystals or crystal aggregates occur.” 

 “Crystals of calcium hydroxide and calcium carbonate are big enough to bridge the 

two crack surfaces.” 

 “The amount of crystals varies between different depths in the crack and is different in 

different specimens.” 

 “The degree of crack-filling can be described as low in all specimens. Our judgement 

is that the precipitations have not implied a healing of the cracks to an extent that it 

can hinder penetration of moisture and chloride, i.e. (the healing) has no significance 

with regard to durability”. 

Comment: Direct measurements of chloride penetration -see below- partly contradicts 

this last conclusion. 
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14.2 Chloride concentration in crack walls 
Thin slices were cut perpendicular to the crack walls on 4 depths in the crack (5-10 mm, 15-

20 mm, 25-30 mm and 35-40 mm); see figure 14.1. The outer 5 mm from each slice was 

broken loose and used for chloride analysis. The chloride content was determined by ion 

selective electrode on dissolved sample. The cement content was determined by EDTA 

titration using photometric determination of transition. It is assumed that no other component 

in the sample but cement contains calcium and that the CaO content of the cement is 63 

weight-%. 

 

The technique used gives the total chloride content, i.e. the sum of free and bound chloride. 

 

The results are shown in figure 14.6-14.10. The following conclusions can be drawn: 

 

 For all specimens stored in salt water (sea or brackish) the salt concentration 

decreases with increasing distance from the crack tip. Since the crack widths are quite 

big, this shows that the precipitation in cracks obstructs the inflow of chloride. 

 Specimens permanently stored in sea water reaches a total chloride content of about 

2% on the depth 7.5 mm and about 0.5% on 37.5 mm depth. The chloride content is 

more or less independent on the thickness of the cover (figure 14.6). 

 For specimens permanently stored in sea water the crack width 0.4 mm seems to give 

somewhat lower chloride content in the outer part of the crack than 0.2 mm. On bigger 

depth this difference vanishes (figure 14.6). 

 At cyclic immersion and drying in sea water the chloride content on bigger depth 

reaches about the same level as permanent immersion; i.e. about 0.5% (figure 14.7). 

However, the cover seems to have some effect for the thinner crack; 55 mm cover 

gives much lower ingress of chloride than 75 mm cover when the crack width is only 

0.2 mm. 

 The relaxed crack does not reduce ingress of chloride (figure 14.8).  

 Immersion in brackish water reduces the chloride content by about 50%. About 0.9% 

is reached at the outer part of the crack and about 0.3% at bigger depth (figure 14.9). 

 Specimens stored in pure water have very low chloride content on all depths which 

shows that the sealing of crack sides has worked (figure 14.10). 

 Specimens with sealed crack mouth have low chloride content on all depths (figure 

14.10). The chloride level is however somewhat higher than for specimens stored in 

pure water, especially close to the crack tip, which indicates that the seal of the crack 

mouth has not been perfect. 

 

Theoretically, the chloride profiles can be used for estimation of the chloride diffusion 

coefficient in cracks using Fick´s law: 

 
  
  
     [

 

(     )   
] 

 

where 

   is the chloride content on depth x (m) 

   is the chloride content at the surface (crack mouth) 

x  is the depth (m) 

   is the (effective) chloride diffusion coefficient (m
2
/s) 

    is the exposure time (s) 
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The equation implies that there is no time delay caused by penetration into the 5 mm thick 

crack wall, and that the relation between free and bound chloride is constant over time and 

independent of the chloride content. 

 

Unknown entities in the equation are the surface concentration and the diffusion coefficient. 

Theoretically, they can be obtained by applying the equation to the measured chloride 

distribution curves, provided chloride binding is linear (the relation between free and bound 

chloride is constant). The actual curves give different values of surface concentration 

depending on which points of the curves are used. Since the same concrete was used in all 

tests it is reasonable to assume that the surface concentration (sum of bound and free chloride) 

is the same for all specimens stored in the same way. This means that the diffusion coefficient 

will vary depending on which point on the curves is used.  The result of the application of 

Fick´s law gives the diffusivities listed in table 14.1 and 14.2. 

 

Table 14.1: Chloride diffusion coefficient for penetration in cracks. 

                   Permanent immersion in sea water. 
Specimen Crack width 

(mm) 

Cover 

(mm) 

Assumed surface 

concentration (%) 

Depth used for 

determination of  

diffusion coefficient 

(mm) 

Diffusion  

coefficient 

10
-12 

(m
2
/s) 

H55-2-1-1 

Fig 14.6 

0.4 55 2.5 7.5 

17.5 

27.5 

37.5 

6.0 

9.0 

11.4 

16.4 

3.0 7.5 

17.5 

27.5 

37.5 

3.0 

6.2 

9.4 

13.8 

Mean 9.4 

H55-4-1-1 

Fig 14.6 

0.2 55 2.5 7.5 

17.5 

27.5 

37.5 

14.6 

13.4 

11.3 

11.4 

3.0 7.5 

17.5 

27.5 

37.5 

5.0 

8.7 

8.8 

10.1 

 10.4 

H55-4R-1-1 

Relaxed crack 

Fig 14.8 

0.4 55 2.5 

(unrealistic 

low value; see fig 27) 

  

3.0 7.5 

17.5 

27.5 

37.5 

11.2 

10.8 

10.7 

13.7 

 11.6 

3.5 7.5 

17.5 

27.5 

37.5 

5.0 

8.0 

9.4 

11.6 

 8.5 
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Table14.2: Chloride diffusion coefficient for penetration in cracks. 

                  Permanent immersion in brackish water. 

 

 

The value of the diffusion coefficient depends on the assumption concerning the surface 

concentration and on the choice of location on the chloride concentration curve. The range is 

from about 610
-12

 to 1010
-12

 m
2
/s with the mean value 910

-12
 m

2
/s. 

 

The chloride diffusion coefficient for un-cracked concrete of the actual quality can be 

expected to be of the order 110
-12

 à 512
-12

 m
2
/s. The diffusion coefficient of the healed crack 

is higher but still low enough to indicate that even a rather coarse crack (0.4 mm) is able to 

form a certain barrier to chloride penetration. If there was no barrier the chloride 

concentration ought to be almost the same on all depths since in such a case one should expect 

the same chloride concentration in the “crack water” on all depths.

Specimen Crack width 

(mm) 

Cover 

(mm) 

Assumed surface 

concentration (%) 

Depth used for 

determination of  

diffusion coefficient 

(mm) 

Diffusion  

coefficient 

10
-12 

(m
2
/s) 

S175-4-1-1 

Fig 14.9 

0.4 55 1.5 7.5 

17.5 

27.5 

37.5 

3.4 

13.5 

15.4 

15.8 

2.0 7.5 

17.5 

27.5 

37.5 

1.6 

7.4 

9.4 

12.4 

Mean 9.8 

S175-4-1-1 

Fig 14.9 

0.4 75 1.5 7.5 

17.5 

27.5 

37.5 

2.2 

4.8 

8.3 

12.4 

2.0 7.5 

17.5 

27.5 

37.5 

1.2 

3.4 

6.6 

9.6 

 6.0 
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 

  
 

Figure 14.6: Chloride content in crack walls. Permanently immersed in sea water. 

      Effect of crack width. 

      Left figure: Cover 55 mm. Right figure: Cover 75 mm. 

 

 

  
 

Figure 14.7: Chloride content in crack walls. Cyclic immersion and drying in sea water. 

      Effect of crack width. 

      Left figure: Cover 55 mm. Right figure: Cover 75 mm. 

 

 

 

 

Figure 14.8: Chloride content in crack walls. Relaxed crack. Effect of type of exposure. 

      Cover 55 mm. Crack width 0.4 mm. 
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Figure 14.9: Chloride content in crack walls. Permanently immersed in brackish water.  

      Effect of cover. Crack width 0.4 mm. 

 

  
 

Figure 14.10: Chloride content in crack walls. 

        Left figure: Permanent exposure in tap water (2 specimens). 

        Right figure: Sealed crack opening. 4 specimens with crack width 0.2 and 0.4    

        mm. 2 specimens permanently immersed. 2 specimens exposed to cyclic   

        immersion and drying.  
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APPENDIX 1 
 
Photographs of the lowest part of the crack before and 
after exposure  
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A: Specimens exposed to sea water from the Swedish west coast 
A.1: Specimens permanently immersed in sea water 

 
Side 1 Side 2 

  
 

Figure A1.1: Permanently in sea water. 

Crack width 0.2 mm. Cover 55 mm. Specimen H55-2-1-1 

 

 
Side 1 Side 2 

  
 
Figure A1.2: Permanently in sea water. 

Crack width 0.2 mm. Cover 75 mm. Specimen H75-2-1-1 

 
 
 
 
 

Before                                                  After
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Side 1 Side 2 

 
 

Figure A1.3: Permanently in sea water. 

Crack width 0.4 mm. Cover 55 mm. Specimen H55-4-1-1 

 
 

Side 1 Side 2 

  

 
Figure A1.4: Permanently in sea water. 

Crack width 0.4 mm. Cover 75 mm. Specimen H75-4-1-1  
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Side 1 Side 2 

  

 
Figure A1.5: Permanently in sea water. Relaxed crack. 

Crack width 0.4 mm. Cover 55 mm. Specimen H55-4R-1-1 
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Side 1 Side 2 

 
 

 
Figure A1.6: Permanently immersed in sea water. Sealed crack opening 

Crack width 0.2 mm. Cover 75 mm. Specimen S275-2-1-1 

 

 
Side 1 Side 2 

 
 

 
 
 

Figure A1.7: Permanently immersed in sea water. Sealed crack opening 

Crack width 0.4 mm. Cover 75 mm. Specimen S275-4-1-1. 

  



 41 

 A2: Specimens exposed to cyclic immersion in sea water and drying 
 

 
Side 1 Side 2 

  
 
Figure A1.8: Cyclic immersion in sea water and drying.  

Crack width 0.2 mm. Cover 55 mm. Specimen H55-2-2-1. 

 

 
Side 1 Side 2 

  
 
 
Figure A1. 9: Cyclic immersion in sea water and drying.  

Crack width 0.2 mm. Cover 75 mm. Specimen H75-2-2-1. 
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Side 1 Side 2 

  
 
Figure A1.10: Cyclic immersion in sea water and drying.  

Crack width 0.4 mm. Cover 55 mm. Specimen H55-4-2-1. 

 

 
 

Side 1 Side 2 

 
 

 
 
Figure A1.11: Cyclic immersion in sea water and drying.  

Crack width 0.4 mm. Cover 75 mm. Specimen H75-4-2-1. 
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Side 1 Side 2 

  
Figure A1.12: Cyclic immersion in sea water and drying. Relaxed crack. 

Crack width 0.4 mm. Cover 55 mm. Specimen H55-4R-2-1. 
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Side 1 Side 2 

  
Figure A1.13: Cyclic immersion in sea water and drying. Sealed crack opening. 

Crack width 0.2 mm. Cover 75 mm. Specimen S275-2-2-1. 

 
 
 

Side 1 Side 2 

 
 

 
Figure A1.14: Cyclic immersion in sea water and drying. Sealed crack opening. 

Crack width 0.4 mm. Cover 75 mm. Specimen S275-4-2-1. 
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B: Specimen permanently immersed in brackish water from the 
Baltic Sea 
 

 
Side 1 Side 2 

  
Figure A1.15: Permanently immersed in brackish water 

Crack width 0.4 mm. Cover 55 mm. Specimen S155-4-1-1-Ö. 

 
 

Side 1 Side 2 

 
 

 
Figure A1.16: Permanently immersed in brackish water 

Crack width 0.4 mm. Cover 75 mm. Specimen S175-4-1-1-Ö. 
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C: Specimens permanently immersed in tap water 
 

 
Side 1 Side 2 

 

 
Figure A1.17: Permanently immersed in tap water 

Crack width 0.4 mm. Cover 55 mm. Specimen S155-4-1-1-R. 

 
 

 
Side 1 Side 2 

 
 

 

Figure A1.18: Permanently immersed in tap water 
Crack width 0.0157 in. Cover 75 mm. Specimen S175-4-1-1-R. 
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APPENDIX 2 

 
Photographs of the crack on about 3 cm depth after 
terminated exposure 
 
 
Photographs of the lower part of the crack for the same specimens are shown 
in figures 7.2 - 7.11 in the main text 
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Figure A2.1: 0.2 mm crack after 1 year permanent immersion in sea water.  

                     Test series 1, specimen H75-2-1-1. 

 

 
Figure A2.2: 0.4 mm crack after 1 year permanent immersion in sea water. 

                     Test series 1, specimen H75-4-1-1. 
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Figure A2.3: 0.2 mm crack after 1 year cyclic immersion in sea water and drying.  

                     Test series 1, specimen H75-2-2-1. 

 

 
Figure A2.4: 0.4 mm crack after 1 year cyclic immersion in sea water and drying.  

                     Test series 1, specimen H75-4-2-1. 
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Figure A2.5: 0.4 mm relaxed crack after 1 year permanent immersion in sea water.  

                     Test series 1, specimen H55-4R-1-1. 

 

 
Figure A2.6: 0.4 mm relaxed crack after 1 year cyclic immersion in sea water and drying.  

                     Test series 1, specimen H55-4R-2-1. 
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Figure A2.7: 0.4 mm crack after 1 year permanent immersion in pure water.  

                     Test series 3, specimen S175-4-1-1-R. 

 

 
Figure A2.8: 0.4 mm crack after 1 year permanent immersion in brackish water.  

                     Test series 2, specimen S175-4-1-1-Ö. 
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Figure A2.9: 0.4 mm sealed crack after 1 year permanent immersion in sea water. 

                     Test series 5, specimen S275-4-1-1. 

 

 
Figure A2.10: 0.4 mm sealed crack after 1 year cyclic immersion in sea water and drying.  

                       Test series 5, specimen S275-4-2-1. 
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APPENDIX 3 
 
Element composition of precipitations in cracks 
 
Data from Kalinowski & Fjällberg (2010)  
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Table A3.1: Element composition of precipitations in cracks.  

                   Specimens permanently stored in sea water. 
Cover Crack width 

 

Depth Type of 

precipitation 

Elements 

 

Specimen 

 

 

 

 

 

 

 

 

 

 

 

55 mm 

 

 

 

 

 

0.2 mm 

 

 

 

5 mm 
1)

 

Cubes 78-91% CaO 

2-10% MgO 

4-8% SiO2 

 

 

 

 

 

H55-2-1-1 

Fig 14.2 

Needles 

 

11-13% Al2O3 

14% SiO2 

14% SO3 

55% CaO 

 

55 mm 
2)

 

Big crystals 98% CaO 

Small needles 2% Al2O3 

33% SiO2 

55% CaO 

 

 

 

0.4 mm 

5 mm 
3)

 Crystals 69% MgO 

15% SiO2 

11% CaO 

 

 

 

H55-4-1-1 

Fig 14.2 
 

55 mm 
4)

 

Needles 11% Al2O3 

14-16% SiO2 

15% SO3 

55% CaO 

Crystals (plates) 90% CaO 

 

0,4 mm 

Relaxed crack 

 

5 mm 
5)

 

Needles 6-15% Al2O3 

1-10% MgO 

3-12% SiO2 

8-22% SO3 

51-82% CaO 

 

 

H55-4R-1-1 

Fig 14.2 

Crystals (plates) 98% CaO 

55 mm 
6)

 Crystals 92-97% CaO 

 

 

 

 

75 mm 

0,2 mm 

Sealed crack 

opening 

 

5 mm 
7)

 

Plates 91-97% CaO  

 

S275-2-1-1 

Fig 14.2 

 

Plates 18-36% Al2O3 

1-8% SiO2 

0% SO3 

52-60% CaO 

55 mm 
8)

 Plates 98% CaO 

0,4 mm 

Sealed crack  

opening 

 

5 mm 
9)

 

Plates 85-99% CaO  

 

S275-4-1-1 

 

Small plates 32% Al2O3 

5-9% SiO2 

56-60% CaO 

55 mm 
10)

 Plates 95-99% CaO 

Comments from Kalinowski & Fjällberg (2010) are cited below. 

1) “Calcite crystals with prismatic shape, size to 50x10 m.  Needle-shaped sulphates of unspecified 

composition” 

2) “Big amount of Ca(OH)2-crystals with size of about 0.5 mm” 

3) ”Small amount of Mg(OH)2-crystals (size about 20 m)” 

4) “Comparably small amount of big Ca(OH)2-crystals (size up to 0.5 mm). Needle-shaped crystals of 

unspecified sulphates” 

5) “Ca(OH)2-crystals as single small prismatic prisms (size about 100 m) and bigger crystal aggregates. 

Ca(OH)2 also exists in the shape of fine-grained coating (aggregate of very small needle-shaped crystals). 

Precipitation of ettringite and other unspecified sulphates” 

6) “Very abundant presence of plate-shaped Ca(OH)2-crystals (size to 1 mm). No sulphates” 

7) “Ca(OH)2 in the shape of big plates (to 1 mm). Hexagonal plate-shaped crystals of Ca-aluminate. No 

ettringite” 

8) “Ca(OH)2 as big plates (to 1 mm)” 

9) “Big amount of  Ca(OH)2, mostly as small grains with irregular shape. A small amount of single hexagonal 

flat crystals of Ca-aluminate” 

10) “ Comparably low amount of Ca(OH)2-crystals (much less than on depth 5 and 25 mm). Ca(OH)2 exhibits 

itself as big plates, smaller prismatic crystals and grains with irregular shape”
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Table A3.2: Element composition of precipitations in cracks.  

                   Specimens cyclically exposed to sea water and air. 
Cover Crack width 

 

Depth Type of 

precipitation 

Elements 

 

Specimen 

 

 

 

 

 

 

 

 

 

 

 

 

 

55 mm 

 

 

 

 

 

0.2 mm 

 

 

5 mm 
1)

 

 

Small crystals 

10-14% MgO 

4-6% SiO2 

 

 

 

 

 

H55-2-2-1 

77-80% CaO 

Dark fine-grained 

“mass” 

76% MgO 

8-10% SiO2 

11% CaO 

 

 

55 mm 
2)

 

Plates 92% CaO 

6% SiO2 

 

Needles 

11% Al2O3 

16% SiO2 

16% SO3 

56% CaO 

0.4 mm  

 

5 mm 
3)

 

Needles type 1 2-7% MgO 

91-96% CaO 

 

 

 

H55-4-2-1 
 

Needles type 2 

64-92% MgO 

2-5% SiO2 

3-33% CaO 

Plate 96% CaO 

55 mm 
4)

 Big crystals 93-96% CaO 

 

 

 

0,4 mm 

Relaxed crack 

 

 

5 mm 
5)

 

Needles/crystals 10-19% MgO 

80-90% CaO 

 

 

 

 

H55-4R-2-1 

 

“Mat” of short 

needles 

56-69% MgO 

0-2% Al2O3 

3-20% SiO2 

4-42% CaO 

 

 

55 mm 
6)

 

 

Needles 

16% Al2O3 

4% SiO2 

25% SO3 

54% CaO 

Big plates 98% CaO 

Comments from Kalinowski & Fjällberg (2010) are cited below. 

1) “Very fine-graded Mg(OH)2 (brucit) appears macroscopically as a bluish coating. No sulphates” 

2) “Mainly Ca(OH)2-crystals and needles of ettringite and unspecified sulphates” 

3) “Very fine-graded brucit. Small bundles of elongated crystals of Ca-carbonate and Ca-hydroxide” 

4) “Abundant amount of crystals of Ca-carbonate” 

5) “Fine-graded coating of brucit (aggregate of of small needle-shaped crystals). Bigger grains of Ca(OH)2 or 

Ca-carbonate with irregular shape” 

6) “Big amount of Ca(OH)2-crystals (size of individual crystal to 200 m. Size of crystal aggregate to 500 m). 

Relatively small amount of needle-shaped ettringite crystals” 
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Table A3.3: Element composition of precipitations in cracks.  

                   Specimens permanently exposed to tap water. 
Cover Crack width 

 

Depth Type of 

precipitation 

Elements 

 

Specimen 

 

 

 

 

55 mm 

 

 

 

 

0.4 mm 

 

5 mm 
1)

 

Prismatic crystals 97-99% CaO 

1-2% SiO2 

 

 

 

 

S155-4-1-1-R 

Fig 14.4 

Thin cover 96% CaO 

3% SiO2 

 

 

55 mm 
2)

  

 

Needles 

17 %Al2O3 

3% SiO2 

25% SO3 

54% CaO 

Small needles  1% SiO2 

98% CaO 

Big plates 92-98% CaO 

Comments from Kalinowski & Fjällberg (2010) are cited below. 

1) “Ca(OH)2 as prismatic crystals and thin coating. No ettringite” 

2) “Big plate-shaped crystals of Ca(OH)2 (size to 1 mm). Small amount of needle-shaped ettringite crystals” 

 

 

Table A3.4: Element composition of precipitations in cracks.  

                   Specimens permanently exposed to brackish water. 
Cover Crack width 

 

Depth Type of 

precipitation 

Elements 

 

Specimen 

 

 

 

 

 

 

55 mm 

 

 

 

 

 

 

0.4 mm 

 

 

 

5 mm 
1)

 

 

Needles 

12-15% Al2O3 

6-17% SiO2 

15-22% SO3 

56% CaO 

 

 

 

 

 

 

S155-4-1-1-Ö 

Small cubes 5%SiO2 

93% CaO 

Plates 98% CaO 

 

 

25 mm 
2)

 

 

Needles 

14-16% Al2O3 

3-10% SiO2 

21% SO3 

53-60% CaO 

Big plates 2-7% SiO2 

93-97% CaO 

55 mm 
3)

 Big plates 5% SiO2 

94% CaO 

Comments from Kalinowski & Fjällberg (2010) are cited below. 

1) “Abundant amount of needle-shaped ettringite crystals. Ca(OH)2 as small cube-shaped crystals. Small amount 

of unspecified sulphates” 

2) “Big plate-shaped of Ca(OH)2 (size to 1 mm). Needle-shaped crystals of ettringite (smaller amount than on 5 

mm deep) and other unspecified sulphates” 

3) “Big plate-shaped crystals of Ca(OH)2. Very small amount of ettringite and Ca Al S-needles” 
 


