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Summary

SUMMARY

“The problems of soil mechanics may be divided into two principal
groups - the stability problems and the elasticity problems. The sta-
bility problems deal with the conditions for the equilibrium of ideal
soils immedjiately preceding ultimate failure by plastic flow.”

"Elasticity problems deal with the deformations of the soil due to its
own weight or due to external forces such as the weight of the
building. All settlement problems belong in this category.”
(Terzaghi, 1943)

.1 General

In this thesis different aspects of geotechnical modelling are dis-
cussed. It is a combination of elements from three different
academic disciplines:

¢ Geotechnics
¢ Structural mechanics
+ Statistics

The work is based upon examples from two fields of geotechnical
modelling:

+ Slope stability, i.e. an example of stability problems

¢ Interaction ground/superstructure, i.e. an example of elasticity
problems

All sorts of technical calculations involve a certain amount of
uncertainty. In this thesis a probabilistic approach is used as a way
to quantify uncertainty.

New calculation methods should, to be operative in design, show a
balance between:

* Realistic description of reality

* Simplicity

¢ Improvement of the state-of-the-art
* Recognition.

* Adaptation to codes

* Possibility of further improvements
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Hence improved accuracy and precision of a method is not neces-
sarily an improvement in engineering practice. In design the level of
refinement has to be valued in the light of the purpose of the
method. In the author’s experience three different levels of com-
plexity is a useful separation of methods with different accuracy
and precision.

>.2 Calculation models

During the last decades it has become mandatory to verify
structures in two different limit states, the ultimate limit state and
the serviceability limit state. Different calculation models can be
used for the verification of the two different limit states.

Safety margin

In the evaluation of safety, the concept factor of safety, F=R/S, has
traditionally been used in both geotechnical and structural engi-
neering. A complication, when engineers from the two disciplines
have to co-operate is that the geotechnical engineer often considers
uncertainty as a resistance problem, while the structural engineer is
more concerned with the uncertainty of the actions. Hence it is not
indisputable whether an improvement should be regarded as an
increase of the resistance or a decrease of the action. The alternative
safety concept, the safety margin M =R-S, does not have this
draw-back. In this thesis a dimensionless safety margin is presented
as an alternative:

R-S§ ]
"R "
with the convenient range [0-100%]. There is a unique relation
between this dimensionless safety margin and the factor of safety,
m = 1—(1/F). This means that the safety margin, in the same way as
the factor of safety but unlike the conventionally defined safety
margin, can be used as a relative measure of safety, e.g. to deter-
mine the critical slip surface in a slope stability analysis.

Probabilistic interpretation of deterministic modelling

In traditional, deterministic modelling the action and the resistance
are represented by fixed and known values. Such an interpretation
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implies that the safety margin actually has a sufficiently large,
positive value.

In a probabilistic approach both the iresistance and the action can
take a wide range of values. This can be interpreted as that the
action and the resistance have fixed but unknown values. The same
is then valid for the safety margin. A sufficiently low probability of
failure is obtained if the safety margin is at least not negative for a
physically possible but unlikely combination of the resistance and
the action.

Random models to describe uncertainty

To describe the unlikeness mentioned in the previous section,
variables in the calculation are given as random variables, i.e.
variables in which the probability of different outcomes is given by
probability distributions. A number of distributions can be used for
this purpose, for example:

+ normal distribution

* lognormal distribution

¢ Extreme value distributions
¢ B-distributions

+ Exponential distribution

The choice of distribution for a particular random variable is far
from trivial from a statistical point of view. This is valid especially
for calculations in the ultimate limit state in which very low values
of the probability of failure are foreseen. Hence the tails of the dis-
tributions govern the design. An ordinary geotechnical testing then
represents too small samples for the evaluation of an underlying
distribution. In principle the type of distribution should be chosen
from the physical characteristics of a variable. However, in the
applications in this thesis the probability of failure represents a
formal probability, at least in the ultimate limit state. In such cases
the choice of distribution can often be seen as a code issue, i.e. the
probability demanded and the choice of distribution is an insepa-
rab%e pair. In applications of this latter type the lognormal distri-
bution can serve as a comprehensive distribution, at least in a
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probabilistic analysis of the main characteristics of a problem. The
normal distribution, which is defined for negative values, has to be
used with caution as the negative values often represent physically
impossible situations.

Algorithms

The physical model in a probabilistic analysis does not have to
differ from the model used in a deterministic analysis. However, for
the mathematical solution one has to use special algorithms:

¢ Mathematical analysis
+ PEM
+ Monte-Carlo simulation

¢ Reliability analysis

The algorithms presented above serve as useful tools in the solution
of probabilistic analyses. The mathematical analysis is a straight
forward method, however, restricted to not too complex problems.
In PEM, the point estimate method, the input variables are given as
two-point estimations, see Figure Z.i. It is a simple method, which is
easy to apply in a traditional deterministic model. The results are
restricted to approximate values of the mean value and the variance
of unknown variables. The practical application is limited to
problems with a small number of random variables.

Probability density Point estimation

Figure £.i Principle of point estimate method - PEM

In a Monte-Carlo simulation values of input variables are simulated
from a given distribution of the variable, see Figure X.ii. The simu-
lation results in the complete distribution of any unknown, resulting
variable. The accuracy is governed by the number of iterations.
Only practical reasons limit the accuracy of the results. To obtain the
tails of a distribution a very latge number of iterations is required.
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Cumulative distribution

pi

Xi

Figure Z.ii Iteration step of a basic variable in Monte-Carlo simulation

In reliability analysis, the probability of failure can be represented
by the reliability index f8, see Figure Z.iii.

Figure %.iii Relation between reliability index § and formal probability of failure

PF.

Figure Z.iii is based upon the original definition of f§ as a function of
the parameters of the safety margin:

f=t (Z.id)

To obtain a formulation, which is invariant of the mathematical
formulation of the safety margin the reliability index can be defined
as a geometrical property related to the failure surface, the
reliability index fu... The basic random variables X of a problem
then have to be transformed into a set of independent standard
normal variables U, cf. Figure Z.iv.
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Figure Z.iv Transformation of basic variables from x-space to u-space. The
reliability index ffu-L.

Reliability analysis is used to calculate very small probabilities,
preferably probabilities of failure. In this way the reliability analysis
and the Monte Carlo simulation complement each other

2.3 Soil properties

When describing soil properties as random variables different
uncertainties have to be accounted for

+ Natural variation in the soil
+ Systematic errors in the test method
¢ Random errors due to the test method

¢ Errors due to limited number of tests
Geostatistics

Geotechnical testing gives test values for soil properties in single
points, while geotechnical problems usually are governed by the
average values of soil properties of a volume. In geostatistics soil
properties are modelled as random fields, i.e. an infinite number of
random variables, each applied in a single point of a soil volume.
The main purpose of geostatistics is to describe the dependence
between these variables. Figure Z.v shows observations of the shear
strength versus depth together with two different alternative of a
trend model of the shear strentgth. Deviations from the trend are in
geostatistics considered as random variables. Plots of the correlation
between such pairs of random variables, as a function of the dis-
tances between them, are called correlogram.
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Figure Z.v Influence on a statistical analysis from alternative models of reality.

Figure X.v draws the attention to an important issue in probabilistic
modelling. The correlograms in the figure give completely different
results for two, from a deterministic point of view, similar models of
the shear strength. Hence, in random modelling the variations and
the applied model form an unseparable pair. If both the test method
and the model are perfect no variations exist. An interpretation of
this is that variations in a probabilistic analysis are a measure of lack
of knowledge.

Bayesian statistics

In traditional geotechnical design, pre-knowledge and test results
are combined. In a statistical analysis this can be done systemati-
cally by Bayesian statistics. As an example, a prior distribution of an
unknown mean value of a basic variable can be updated based upon
added information, e. g. test results, see equation X.iii.
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Posterior prob. Norma - Sample likelihood \( Prior prob.
of the true mean |=| lising : gtven of the true (2111)
given the sample |\ constant ) \  the true mean mean

Thus with the added information the uncertainty of the unknown
parameter is reduced.

Assume a situation in which pre-knowledge shall be valued as
equivalent to the results of a test series. The pre-knowledge of the
property can then be interpreted as an equivalent sample x1 of m
tests such that:

2

w=x: and =2 (Z.iv)

0.,12

if the standard deviation is known and

2

Ing=Inx, and m= % (Z.v)

if the coefficient of variation is known. The parameter ¢ or V here
denotes uncertainty of the basic variable, ie. including measure-
ment errors, while ¢’ or V” denote the uncertainty of the mean value
of the basic variable. The result of such an up-dating process is
given in Table Z.1.

Prior information Up-dating no.1 Up-dating no. 2
u [kPa] V [%] u [kPa] V [%] u [kPa] V [%]
Prior - - 15,6 19 14,1 12
Likelihood - - 13,9 6 13,8 5
Posterior - - 14,1 6 14,0 4
Baysian 15,6 22 14,1 12 14,0 11

Table X.i Baysian up-dating of the undrained shear strength. (=table 3.1 for z=10)
Pore pressure

It is a well-known fact that many failures in geotechnical design
originate in mistakes in the assessment of the pore pressure. Hence,
a procedure of a probabilistic description is of interest. An investi-
gation of ground-water data from 39 observation series from the
south of Sweden, shows that the application of a ‘best’ choice of
distribution is far from trivial,;see Figure X.vi. As could be expected,
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variations in the topography of the landscape play a more important
role than the choice of probability distribution.
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Figure Z.vi Distributions of groundwater observations. Annual maxima.
Shear strength

The drained shear strength is normally given as a function of two
effective stress parameters, the cohesion intercept ¢’ and the friction
. angle ¢. The difficult problem to asses the correlation between these
two variables can be eliminated from the analysis by treating the
shear strength, in a stress range of interest, as a random variable.
The shear strength can in many practical cases be modelled in a
wide stress range with only tan¢ as a random variable. This requires
the use of the concept of attraction, i.e. cohesion seen as pre-stress
instead of as adhesion.

If one wants to describe the undrained shear strength with effective
stress parameters it s necessary to know the pore pressure in a
failure zone is known. The magnitude of shear induced pore
pressure is a complex problem. Hence in practical cases one is often
forced to determine the shear strength as an ‘index’ value from field
or laboratory tests. Hence the uncertainty of the test method has to
be incorporated into a probabilistic description.
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X4 Slope stability - Ultimate limit state design

A pragmatic way to describe different situations of drainage condi-
tions in a slope is to separate slope stability analysis into:

¢ Drained analysis

¢ Undrained analysis

¢ Combined analysis
Shear strength

To determine the in-situ stress state in a slope is difficult. Despite
this, great efforts are made in slope stability analysis to relate the
shear strength to this ‘unkown’ stress state:

¢ =c'Ho —u)- tan(e) (Z.vi)

In this thesis an alternative proposal is presented, i.e. to define the
shear strength as the shear stress at failure:

c=1,,=C"H(0),,, —u)-tan(g) (Z.vii)

in which z, # F. 7. Besides the logical advantage with the definition,

the amount of calculation work is reduced considerably in a slope
stability analysis. This latter advantage is the main purpose of the i
definition in this thesis.

‘Stable’ slopes

An often raised issue is how to interpret in a probabilistic way the
fact that a natural slope has proved to be stable during a long time.
In this thesis the idea is presented that the observed fact of stability
can be regarded as an ultimate control, hence the probability distri-
bution for the safety margin can be truncated. This means that a
slope with a long history has a larger safety than a new slope if the
slopes in all other respects are equivalent.

Application

In the beginning of this section it was stated that a useful separation
of calculation models is in three levels of complexity. Such a separa-
tion for slope stability analysis is summarised in the following.
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Level 1- ‘Design chart’

The level 1 method presented in this thesis is a probabilistic inter-
pretation of the well-known ‘design chart’ method given by the
equation:

rNC, (Z.viii)
B

d

with the safety margin m = In(F). As an example, the distribution of
the safety margin is given in Figure Z.vii. The scale of the y-axis is in
a normal probabilistic scale, i.e. a normal distribution gives a
straight line. The simplicity of the procedure makes it a good com-
plement to a more careful, deterministic analysis as well as a
starting point for a comprehensive probabilistic analysis.

Safety margin

o'p) 0

Lh

0 0.2 0.4 0.6 0.8

Figure Z.vii Level 1. Undrained analysis. Reliability analysis and
Monte Catlo simulation of the safety margin m=In(F).

Level 2 - Bishop's simplified method

Bishop’s simplified method is a well-known and often used model
for slope stability analysis. In this thesis the method is combined
with the shear strength presented in the section ‘shear strength” and
adapted to combined analysis. A result obtained from the analysis is
that different types of analyses result in different critical slip circles,
see Figure X.viii. The distribution of the safety margin for the ‘most’
critical slip circle is shown in Figure Z.ix.

xxiii




‘True’ critical circle ——= ‘Deterministic’ circle

‘Undrained’ circle -~ ‘Surveyed’ geometry
Figure Z.viii ‘Critical’ slip circles

Safety margin
S T T T

o7'(p) 0

Figure Z.ix Level 2. Combined analysis. Monte Carlo simulation of the safety
margin. Alt. ‘true critical circle’

Level 3 - A shear beam model

A proposal for a discrete element model for slope stability analyses
is outlined. A slope is in the method modelled as a frame work of
shear beams, see Figure X.x.

5

4 ohmmmmgees

Figure Z.x Geometry of the shear beam model.

The method does not include any assumption of a constant degree
of mobilisation along a slip surface. Instead the deformation
properties of the soil are considered. Figure X.xi shows the distribu-
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tion of normal stresses at the slip surface for two different
assumptions of stiffness distribution.

o

¢n =@ — ’Initial’ —e— ‘Long term’ ~r—mrme Bishop, drained
e *  ,combined

Figure Z.xi Normal effective stress distribution.

The result of a probabilistic analysis is shown in Figure X.xii. The
figure is an analysis of the same slip circle as the result in
Figure Z.ix.

Safety margin

0 02 0.4 0.6 0.8

Figure Z.xii Level 3. Shear beam model. Combined analysis. PEM-calculation
of the safety margin. Alt. ‘true critical circle’

L5 Interaction ground/superstructure

Interaction between the ground and the superstructure is an issue of
combining geotechnical and structural engineering. This thesis
presents a number of means aimed at this purpose.

Spread foundations

As a tool of rapid assessments of stresses and strains in the soil
Bous51r_1esque's solution for an elastic half sphere is given an
approximate formulation with high accuracy. Based upon this the

vertical stress for a uniformly distributed surcharge p on an area B
times L. becomes:
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+ atan
47z +(B+2x) ( 2z
c,{x,y,2)="5"

T i 2z(B-2x) : +atan(B_2x),
L 4z +(B-2x) 2z

[ 22(L+2y) L+2y |
2z I+

—+atan(
4z* +(L+2y)

+[ 24(L-2y) +atan( L2y )il
2z

4z% + (L —2‘1/)2

[ 22(B +2x) B+2x)}j¢

s

(Z.ix)

Closed formulas for the settlements of the ground surface can be
obtained by integration. As an example , the settlements of a line
load can be approximated as:

/3
[( 50'H] -1] ; x>B/4
P 40x+H (Z.x)

M ; 2R
( 50-H ) -1| ; x<B/4
10-B+H

Piled foundation

s(x) =

Piled foundation adds an extra complexity as two elements with
very different stiffness, the pile element and the soil have to interact.
A useful tool is the concept ‘the neutral plane’, which can be esti-
mated as:

zy=07-(1-m)-L (Z.xi)
for constant shaft friction and as:
zy, =085-1-7n-L (X.xii)

for increasing shaft friction, where in both formulas 1 is the degree
of mobilisation for the shaft friction.

A creep model

To determine volumetric creep deformations in clay a simple
rheological model is given, see Figure Z.xiii. Based upon the model
the total deformations can be determined as a sum of elastic/plastic
deformations and creep deformations by the equation:
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s(t) =L (£) -§+ 5.() (.xiii)

The elastic/platic deformations are .delayed compared to classical
theory, Figure Z.xiv.

| A:Consolidation
B: Elastic/plastic

A:
Fq deformation.
C: Creep

C: | deformation.

Figure Z.xiii Rheological creep model
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Figure Z.xiv Influence of the dissipation of excess pore pressure due to creep.

An example of an application of the creep model outlined above is
presented in Figure Z.xv. The results are compared with results
from a finite element method developed in Trondheim.
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Settlement (m)

—— Creep model incl creep
. KRYKON
s Creep model excl creep
KRYKON N
o Observations

(1K} o

L

time (years)
Figure Z.xv Oslo railroad customs building. Calculated and observed settle-
ments. From (Alén, 1998b) and (Svang et al., 1991).

Application

Similarly as for slope stability applications are presented for three
different levels of refinement. Figure Z.xvi shows the cross-section
of the analysed superstructure.

Figure Z.xvi Cross-section of superstructure

Level 1 is based upon assumptions of rigid superstructure or fixed
supports alternatively, Figure 2. xVil.
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Eh El,

s % s % 5
t t 1

Figure Z.xvii Level-1. Interaction model:
Rigid superstructure/Flexible supports and
Fixed supports/Flexible superstructure respectively.

- D

=0
ol

Level 2 is an analysis of an elastic superstructure and spring
supports, Figure Z.xviii.

[ | 1 ]
S1g ElL - Elzsag

1 1

Figure Z.xviii Level-2. Interaction model:
Flexible superstructure/Flexible supports.

In level 3 interaction in the ground between the supports is
considered.

Figure Z.xix Interaction in the ground between supports

A soil beam model represents the soil in the interaction analysis,
Figure Z.xx. The soil beam is a continuous shear beam on elastic
supports. The idea behind the model is to calibrate the properties of
the beam against a more rigorous geotechnical model.
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Figure Z.xx Level-3. Soil beam model. Interaction between supports.
Flexible superstructure/Flexible supports.

Figure Z.xxi shows settlements obtained with the soil beam model.
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Figure Z.xxi Soil beam model. Settlements.

Reactions and a bending section moment in the superstructure is
summarised in Table Z.ii. The table shows clearly the difficulties to
determine appropriate section forces in a superstructure.

Ri[kN] | R2{kN] | R [kN] | M [kNm]

uIV% },LlV% [,l,lV% ],L|V%

Level 1  Rigid superstructure

. [49 22 [130]15 [22 [35 [-70]17

Level 1  Fixed supports

[73 20 [66 [19 61 [18 [80 |28

Level -2 Flexible superstructure

[65 J20 [88 17 47 |21 |28 |60

Level -3, Soil beam model

[65 T20 186 [15 J48 [19 [32 [38

Table Z.ii Example of interaction models
Reaction and section forces.




