
minerals

Article

Application of Optimization Method for Calibration and
Maintenance of Power-Based Belt Scale

Kanishk Bhadani 1,* , Gauti Asbjörnsson 1, Erik Hulthén 1 , Kristoffer Hofling 2 and Magnus Evertsson 1

����������
�������

Citation: Bhadani, K.; Asbjörnsson,

G.; Hulthén, E.; Hofling, K.;

Evertsson, M. Application of

Optimization Method for Calibration

and Maintenance of Power-Based Belt

Scale. Minerals 2021, 11, 412. https://

doi.org/10.3390/min11040412

Academic Editor: Saija Luukkanen

Received: 12 March 2021

Accepted: 13 April 2021

Published: 14 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden; gauti@chalmers.se (G.A.); erik.hulthen@chalmers.se (E.H.); magnus.evertsson@chalmers.se (M.E.)

2 Division Stone Materials, NCC Industry AB, SE-451 55 Uddevalla, Sweden; kristoffer.hofling@ncc.se
* Correspondence: kanishk@chalmers.se

Abstract: Process optimization and improvement strategies applied in a crushing plant are coupled
with the measurement of such improvements, and one of the indicators for improvements is the
mass flow at different parts of the circuit. The estimation of the mass flow using conveyor belt power
consumption allows for a cost-effective solution. The principle behind the estimation is that the power
draw from a conveyor belt is dependent on the load on the conveyor, conveyor speed, geometrical
design, and overall efficiency of the conveyor. Calibration of the power-based belt scale is carried
out periodically to ensure the accuracy of the measurement. In practical implementation, certain
conveyors are not directly accessible for calibration to the physical measurement as these conveyors
have limited access or it is too costly to interrupt the ongoing production process. For addressing
this limitation, a better strategy is needed to calibrate the efficiency of the power-based belt scale
and maintain the reliability of such a system. This paper presents the application of an optimization
method for a data collection system to calibrate and maintain accurate mass flow estimation. This
includes calibration of variables such as the efficiency of the power-based belt scale. The optimization
method uses an error minimization optimization formulation together with the mass balancing of the
crushing plant to determine the efficiency of accessible and non-accessible conveyors. Furthermore, a
correlation matrix is developed to monitor and detect deviations in the estimation for the mass flow.
The methods are applied and discussed for operational data from a full-scale crushing plant.

Keywords: power-based belt scale; calibration; sensor and measurement; instrumentation; mass
balance; aggregate production; data management; correlation matrix; optimization

1. Introduction

A crushing plant operation is a dynamic process as the performance varies over time.
Monitoring and controlling such process performance are of importance for running the
plant at a profitable state which needs decision-making support. The key to the decision-
making process is the availability of the right information at the right time. Crushing
and screening processes in an aggregates production require continuous supervision of
operations for producing various aggregate products based on customer demands. This
entails the development of technological solutions to provide a robust and reliable tool to
the operators and plant managers which can facilitate useful and proactive decisions.

Figure 1 shows a multi-layered development model proposed for the implementation of
optimization functionality in a crushing plant [1]. Various individual research has been per-
formed at different levels of the model presented. For instance, equipment modelling [2–4],
process modelling [5,6], data collection [7,8], performance calculation [9] and process opti-
mization methods [10–15]. The decision-making process is based on both plant operational
data as well as the results from plant simulation. For such multi-layered implementation of
optimization functionality, reliable underlying systems (measurement system, models, etc.)
are needed. Based on the choice in the underlying systems, each development stage inherits
certain accuracy indicated by its total relative errors (ϕi, δi,ω, β) [1].
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Figure 1. Error propagation model for the implementation of the optimization functionality in crushing plants [1,9].

In particular, the paper focuses on the data collection system for the crushing plant
which typically includes continuous process variables such as mass flow, power draw,
equipment settings, and control setpoints. The aim is to maintain low error values in
the data collection system, particularly, the mass flow system. The mass flow system, in
consideration here, uses a power-based belt scale technique developed by Hulthén [7].
According to the working principle, the power draw from a conveyor belt is a function
of the load on the conveyor, the conveyor speed, conveyor geometrical design and its
overall efficiency [16]. The system is a cost-effective solution in terms of installation and
can be easily integrated with a cloud solution. However, there is an underlying gap that the
system needs frequent physical calibration as the mass flow is a function of power draw
in the conveyors. It has been observed that the maintenance status (conveyor alignment,
roller and belt contact, jammed material, wear, etc.) of the power-based belt scale varies
during different times of operation which creates reliability issues in the mass flow system.

The following paper demonstrates the application of the optimization method for
calibration of the off-line data collections system. The application of the optimization
method is intended for continuous calibration of the mass flow system. Additionally, a
smart maintenance alert system for the conveyors using deviation calculation is proposed.
The purpose of the research is to increase reliability within the collected data from the
process and equipment operations which can be used for process improvements and
process optimization studies.

2. Review of Data Collection System for Aggregate Production

To observe the crushing plant performance, measurements of various input and output
variables associated with the process performance are required. The input variables are
typically entities such as material properties, equipment settings (e.g., closed-side settings
of crushers) and control setpoints. The output variables are typically entities such as power
consumption, operational time, bin levels and mass flow at various points in the process.
Since a crushing plant has a dynamic characteristic, both the input and output variables
are a function of time and exhibit both discrete and gradual changes during operation.

According to the benchmark study by Väyrynen [17], there are various solutions
for a mass flow approximation. Solutions such as load-cell-based, laser profilometer,
ultrasonic sensor, and power-based belt scale. These scales vary largely on aspects such
as cost, accuracy, and maintenance. The study showed that the power-based belt scale
accuracy is within 1% of the cumulative error to the reference mass flow carried out
with a load-cell-based scales and it is a cost-effective solution with low maintenance [17].
Itävuo, et al. [18] successfully applied the power-based belt scale mass flow as an input
in the control algorithm for increasing the utilization of an aggregate production plant.
Practical experience shows that there are, independent of the measurement method, a
certain number of errors in the mass flow measurements. These typically occur due to
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either gradual changes over time like e.g., component wear or more instant changes like a
rock getting stuck in a load cell or roller.

Hodouin and Vaz Coelho [19] highlighted sources of variations occurring in the mea-
surements system of wet processes in minerals processing such as heterogeneous nature of
the material stream, imperfections in sensors, natural disturbances in ore characteristics and
processing conditions. Furthermore, applications of optimization and data-reconciliation
methods using material balance for estimating unknown data [20,21], or improving data
quality [22–24] in wet processes of minerals processing circuit are shown. Data reconcilia-
tion using a two-tier approach, global multi-nodal mass balance and error minimization
function is applied for measuring the performance index, which is a measure of assessing
the quality of data [25,26]. Extensive work is performed on wet processes for data recon-
ciliation [27] while there is limited application towards the coarse comminution circuit
of the minerals processing. There is scarce work in linking the sensor variables to the
mass balancing of the circuit as the changes occurring due to physical deterioration of the
equipment affect the sensor recordings. Especially if the sensors are directly linked to the
equipment performance, such as in the case of power-based belt scale in conveyors. There
is a possibility to continuously update the sensor variables to compensate for the dynamic
change occurring during the process operation.

3. Methods

The following chapter first briefly describes the working principle of the power-based
belt scale for conveyor mass flow estimation [16] followed by a description of the calibration
process and deviation measurement process. The calibration process uses an optimization
method to minimize the error between the estimated value and the stored values. The
deviation measurement is based on the correlation matrix to identify the deviating con-
veyors during process operation. Both the calibration and deviation measurement use the
property of mass balancing in the crushing plant operations.

3.1. Theory of Power-Based Belt Scale Conveyors

The power draw from a conveyor belt is dependent on the load on the conveyor,
the conveyor speed, geometrical design, and the overall efficiency of the conveyor. The
working principle of the power-based belt scale is based on equating the mechanical
power required to lift the material to a certain height to the corresponding electrical power
consumed by the conveyor. A detailed description of the power-based belt scale can be
found in Hulthén and Evertsson [16] and of underlying mechanical principles in Morin [28],
while a summary is presented here. Figure 2 presents the working principle of conveyor
lifting material and the geometrical properties of the conveyor.

The following variables are used:

h = Li f tingmaterialheight
hdrop = Dropheight f ortheincomingmaterial
a = Angleo f li f tinconveyor
v = Velocityo f theconveyorbelt
l = Lengtho f theconveyorbelt
g = Standardaccelerationduetogravity
PElectrical = Totalpowerdrawinconveyor
.

m = Mass f lowrate
h = Totale f f iciencyo f conveyor
Q = Accumulatedmass

The total power draw in the conveyor is divided into two components: idle power
and load power as shown in Equation (1).

PElectrical = PIdle + PLoad (1)
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The total power required to lift the material consists of three components: potential
energy, acceleration of material and change in momentum of material flow as given in
Equation (2).

PLoad =
.

mgh +
.

mv2 +
.

mv
√

2ghdrop sin α (2)

Combining Equations (1) and (2) and considering the total efficiency (η) of the con-
veyor (power losses due to efficiencies of electrical motor, belt transmission, gear stage and
flat belt) yields the mass flow rate in the conveyor as shown in Equation (3).

.
m =

(PElectrical − PIdle)·η
gh + v2 + v

√
2ghdrop sin α

=
PLoad·η
CGeom

(3)

In short, the mass flow rate is a function of electrical and idle power, total efficiency
and the geometrical and operational constant for a given conveyor as shown in Equation (4).

.
m = f (PElectrical , PIdle, η, CGeom) (4)

3.2. Power-Based Belt Scale Calibration

To calculate the correct mass flow for the power-based belt scale, the value of PIdle and
η need to be calibrated.

3.2.1. Idle Power Calibration

The installed power transducers capture the total electrical power drawn during the
operation of each conveyor. Idle power is dependent on the size and power rating of
the conveyor, temperature, condition and gradually changes as the belt scale is under
operation. The gradual changes can include misalignment in rollers, insufficient roller
contact, etc. As the crushing process operates, there are power spikes in the conveyor at the
beginning of the operation to overcome the cold start condition. As the day progresses, idle
power declines as the conveyors become fully operational. Another phenomenon typically
occurring in the crushing plant operations are the stops of the crusher for closed-side
setting (CSS) change depending on the automatic or manual adjustment for wear. This
results in the recording of idle power from the conveyor occurring periodically depending
on the material flow on the conveyor.

Using the data-filtering techniques, the data set of idle power is obtained. The data
obtained here is fitted to a logarithmic function shown in Equation (5), where t is the time
measurement against the set of points recorded as the idle working of the conveyor.

PIdle_ f it(t) = a + b log(t) (5)

The fitting of the curve is performed using the model fitting optimization method as
shown in Equation (6).

min(PIdle_ f it(t)− PIdle(t))
w.r.t.→ a, b

(6)

The fitted curve is used to find the idle power as a function of time for the given
operational time.
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3.2.2. Conveyor Efficiency Calibration

The total efficiency of the conveyor is calibrated depending on the position of the
conveyor within a circuit. The conveyors are classified into two segments: accessible
conveyors and non-accessible conveyors. The accessible conveyors within a circuit are
the ones where it is possible to take physical measurements of the mass flow whereas
the non-accessible conveyors are the ones which have limited access to make mass flow
measurements or it is too costly to interrupt the ongoing production process. The calibration
of the accessible conveyor is performed by physical measurement of accumulated mass
using external mass measuring equipment such as a front loader for a specified duration of
time. The mass measurement can also be performed using an in-built belt scale based on
load cell (with tachometer) if the conveyor is equipped with it.

The generalized error minimization optimization problem for efficiency calibration is
given in Equation (7), where i is the number of test samples, ei is the relative error function,
QiC is calculated accumulated mass and QiM is measured accumulated mass for a tested time
interval. The value of t1 and t2 represents the start and end time for the calibration for one test.

min∑ ei = ∑ QiM−QiC
QiM

w.r.t.→ η
s.t.
0.75 ≤ η ≤ 0.99
where,

QiC =
t2∫

t1

PiLoad(t)·η
CiGeom

dt

QiM =
t2∫

t1

.
mi(t)dt

(7)

After identifying the efficiencies of the accessible conveyors, the system property of
the plant layout is applied to identify a set of mass balancing equations. For a given time of
operation, at any node within a crushing circuit, the accumulated incoming material mass
is equal to the accumulated outgoing mass as given in Equation (8), where i and j represent
the number of entities before and after the node.

n

∑
i=1

Qi =
m

∑
j=1

Qj (8)

Based on the number of equations (k) derived using Equation (8), a set of error
functions is formulated as shown in Equation (9), where n and m are the number of mass
measuring units before and after the selected node in the plant circuit, respectively.

εk = ‖
n

∑
i=1

Qi,k −
m

∑
j=1

Qj,k‖ (9)

Using the set of Equation (9), an error minimization optimization problem is posed to
identify the set of unknown conveyors efficiency (ηu) for the non-accessible conveyors in
the system as shown in Equation (10). The bounds on the conveyor efficiency are set based
on the historic data from the considered plant operation and previous calibration values.
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min∑ εk
w.r.t.→ ηu
s.t.
0.75 ≤ ηu ≤ 0.99
where,

εk = ‖
n
∑

i=1
Qi,k −

m
∑

j=1
Qj,k‖

Qi =
t2∫

t1

.
midt = ηi

CiGeom

t2∫
t1

PiLoad (t)dt

Qj =
t2∫

t1

.
mjdt =

ηj
CjGeom

t2∫
t1

PjLoad(t)dt

(10)

If the number of error equations is more than or equal to the number of non-accessible
conveyors, a full constrained or an over-constrained optimization problem is formulated.
The optimization problems in Equations (7) and (10) can be solved using gradient-based
constrained optimization algorithms such as the interior-point algorithm. Although it
is possible to use other algorithms depending on the problem status (over-constrained,
under-constrained or fully constrained) which in turn depends on the circuit layout. Using
the above methods, the efficiencies of all the conveyors are calibrated.

3.3. Power-Based Belt Scale Deviation Calculation Using Correlation Matrix

The next step is to check the reliability of the mass flow measurements over continuous
operational time. Due to the dynamic nature of the process operations, deviations are
occurring in the measurements. Using the principle of mass balancing of the system, the
accumulated mass overtime (incoming and outgoing) at each node within a circuit needs
to be in an equilibrium state. The set of equations presented in Equation (9) is used to
develop a correlation matrix as shown in Table 1.

Table 1. Correlation matrix between the conveyor mass flow and error function.

ε1 ε2 . . . εk

CV1 A11 A12 . A1k
CV2 A21 A22 A2k
. . . . . .

CVp Ap1 Ap2 Apk

The value of the Apk matrix can be 1 or 0 depending on if the conveyor is associated
with the error function εk or not based on Equation (9), where p is the total number
of conveyors (CVp) and k is the total number of error equations (εk) for a given plant
configuration. Based on the correlation matrix, two values are calculated for each conveyor
present in the system: Conveyor Error Factor (CEF) and Conveyor Error Ratio (CER).

Conveyor Error Factor (CEF): It indicates the total mean error associated with each
conveyor with respect to the entire system and is given by Equation (11).

CEFp =

kmax
∑

k=1
(Apk ∗ εk)

kmax
∑

k=1
Apk

(11)

Conveyor Error Ratio (CER): It indicates the proportion of the error contributed by each
conveyor to the entire system and is given by Equation (12).
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CERp =
CEFp
kmax
∑

k=1
εk

(12)

The value of the CER is ranked, the conveyor with the higher value is investigated first.
The value of CEF indicates the magnitude of the deviation. The impact of this magnitude
is dependent on the rated capacity of the conveyor. Based on the values of CER and CEF
together, decisions are made:

• If the values are within allowed statistical limits, retain the efficiency value of the
conveyors. If the values are deviating towards a certain direction, create an alert for
operators to inspect the conveyor for any change of physical operation.

• If the values are above the allowed limit, recompensate the deviating conveyor with a
new value of efficiency. This is carried out by modifying Equation (10) depending on
the identified deviating conveyor. In this case, the efficiency value of the deviating
conveyor is set as unknown variable(s).

4. Application in Crushing Plant

The crushing plant layout used in this research is presented in Figure 3, which is a
tertiary stage of a three-stage aggregate production plant. The crushing plant is operated
by NCC Industry and is situated at Uddevalla, Sweden. The material from the stockpile
(SP1) is supplied to the feeder (M1) to the process, which fills up the bin (B1) located before
the crusher (CC1—HP4 Crusher). The crusher output is screened by two screens (S1 and
S2) located sequentially, producing three products (P1, P2 and P3) and one recirculated
product (RP1). The crusher and screens are connected using belt conveyors (CV1 to CV7).
Each equipment data stream, for example, power draw, machine settings, are centrally
connected to the cloud solution [29]. The data captured are typically recorded at a frequency
of 0.1–0.2 Hz. As the process is being operated, the values of the mass flow change with
respect to machine settings, material properties, wear, etc. Table 2 presents the list of
various mass measuring units present in the crushing circuit. As presented, the conveyors
CV1 and CV2 are equipped with the belt scale to measure the mass flow while the conveyors
CV3 and CV7 rely on power-based belt scales that are calibrated by physical measurement
of the mass using a front loader. The conveyor CV4, CV5 and CV6 are also power-based
belt scale and are calibrated using mass balancing equations for the circuit.
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Table 2. Mass measuring units in the crushing plant.

ID Type Reference Mass Conveyor Calibration

CV1 Accessible Load cell Reference value
CV2 Accessible Load cell Reference value
CV3 Accessible Physical Reference value
CV4 Non-accessible - Mass balancing
CV5 Non-accessible - Mass balancing
CV6 Non-accessible - Mass balancing
CV7 Accessible Physical Reference value
B1 Accessible Bin level -

5. Results

The power-based belt scale calibration and deviation measurement calculations are
presented here. A total of 3 days–8 h per day operation data is used. Day 1 data is used for
calibration, where controlled data set for calibration was obtained, while Day 2 and Day 3
data is used for verification and deviation calculation.

5.1. Calibration of Accessible Conveyors

The conveyor CV1 and CV2 are calibrated against the reference data of the load-cell-
based belt scale. The stepwise calibration process for CV1 is presented in Figure 4. The
idle power data is filtered from the recorded electrical power signal using a data-filtering
algorithm. The idle power data set is used to fit the logarithmic function as shown in
Figure 4a. The fitted function is used to estimate the idle power for the entire day of
operation. The recorded electrical power signal and the calculated load power signal
are shown in Figure 4b. Likewise, the load powers for all conveyors are calculated. The
load-cell-based reference mass flow data and the calibrated power-based mass flow is
shown in Figure 4c. Similarly, the conveyor CV2 is calibrated.

Minerals 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 4. (a) Model fitting in idle power data set for conveyor CV1, (b) Calculated load power signal for conveyor CV1, (c) 

Calibrated power-based mass flow rate signal for conveyor CV1. 

The conveyors CV3 and CV7 are calibrated against the physical measurement of the 

accumulated mass for a specified time duration. A front loader was used to collect the 

mass flow and two samples for each conveyor were obtained. The details of the measured 

and calculated values are shown in Table 3. It is observed that the relative error values for 

these calibrations are in the range of 0–4.5%. 

Table 3. Mass measurement for calibration of CV3 and CV7. 

ID      

CV3 Test  Time [s] Q3M [kg] Q3C [kg] ei [-] 

 1 305 4280 4249 0.0073 

 2 300 4280 4050 0.0447 

CV7 Test  Time [s] Q7M [kg] Q7C [kg] ei [-] 

 1 300 2980 2895 0.0285 

 2 310 2990 2989 0.0004 

5.2. Calibration of Non-Accessible Conveyors 

Using the principle of mass balancing of the circuit, the accumulated mass (Q) over 

a given time for each node need to be in an equilibrium state. Six sets of error functions 

(a) (b)

(c)

Figure 4. (a) Model fitting in idle power data set for conveyor CV1, (b) Calculated load power signal for conveyor CV1, (c)
Calibrated power-based mass flow rate signal for conveyor CV1.



Minerals 2021, 11, 412 9 of 15

The conveyors CV3 and CV7 are calibrated against the physical measurement of the
accumulated mass for a specified time duration. A front loader was used to collect the
mass flow and two samples for each conveyor were obtained. The details of the measured
and calculated values are shown in Table 3. It is observed that the relative error values for
these calibrations are in the range of 0–4.5%.

Table 3. Mass measurement for calibration of CV3 and CV7.

ID

CV3 Test Time [s] Q3M [kg] Q3C [kg] ei [-]

1 305 4280 4249 0.0073

2 300 4280 4050 0.0447

CV7 Test Time [s] Q7M [kg] Q7C [kg] ei [-]

1 300 2980 2895 0.0285

2 310 2990 2989 0.0004

5.2. Calibration of Non-Accessible Conveyors

Using the principle of mass balancing of the circuit, the accumulated mass (Q) over a
given time for each node need to be in an equilibrium state. Six sets of error functions are
formulated as shown in Equation (13). The change in bin level at the start to end time is
also accounted for in the functions. The total capacity of the bin (B1) is 30 m3 and assuming
the bulk density of the material as 1.67 tons/m3, the total capacity of the bin is 50 tons. The
material loss during the processing is assumed to be negligible.

ε1 = ‖Q2 − (Q3 + Q4 + Q5)‖
ε2 = ‖Q4 − (Q7 + Q6)‖
ε3 = ‖(Q5 + Q1)− (Q2 + (Qt=0

B1 −Qt=end
B1 ))‖

ε4 = ‖Q1 − (Q3 + Q4 + (Qt=0
B1 −Qt=end

B1 ))‖
ε5 = ‖Q1 − (Q3 + Q7 + Q6 + (Qt=0

B1 −Qt=end
B1 ))‖

ε6 = ‖Q2 − (Q3 + Q7 + Q6 + Q5)‖

(13)

The unknown efficiency of conveyor CV4, CV5 and CV6 are obtained by solving the
optimization problem shown in Equation (14). The optimization problem was solved using
an interior optimum algorithm and the solution converged. It is recommended to start the
algorithm at various start points to test if the solution(s) are converging to global minima
or not. This can lead to the avoidance of adding preferential errors to the efficiency of the
power-based belt scale under calibration. The list of all calibrated conveyor efficiencies is
presented in Table 4.

min(ε1 + ε2 + ε3 + ε4 + ε5 + ε6)
w.r.t : η4, η5, η6
s.t.
0.75 ≤ η4 ≤ 0.99
0.75 ≤ η5 ≤ 0.99
0.75 ≤ η6 ≤ 0.99

(14)
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Table 4. Calibrated efficiencies for the set of conveyors in the crushing plant using Day 1 data.

ID CiGeom ηi

CV1 104.00 0.86
CV2 101.21 0.75
CV3 54.77 0.95
CV4 105.88 0.86
CV5 104.75 0.92
CV6 56.39 0.80
CV7 56.84 0.905

The mass flow recorded from different conveyors for Day 1, 2 and 3 is presented in
Figure 5 respectively. Day 1 data (Figure 5a) is used to calibrate the efficiencies of the
conveyors while Day 2 and Day 3 data (Figure 5b,c) are used to validate the working of the
power-based belt scale. The total accumulated mass for each conveyor is also displayed. It
can be noted that there are observable drifts in the mass flow recording on Day 3 which is
be related to the crusher operation with regards to the control system.
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5.3. Detect Deviation in Mass Flow Measurement

Using the set of mass balancing error functions shown in Equation (13), the correlation
matrix Apk is generated. The correlation matrix (Apk) together with the value of error
functions (εk) is used to calculate the Conveyor Error Factor (CEF) and the Conveyor Error
Ratio (CER) as shown in Table 5.

Table 5. Correlation matrix and error calculations for 3-day operational data.

Correlation Matrix Day 1 Day 2 Day 3

Apk ε1 ε2 ε3 ε4 ε5 ε6 CEF CER CEF CER CEF CER

CV1 0 0 1 1 1 0 2.87 0.12 30.17 0.21 24.89 0.13

CV2 1 0 1 0 0 1 6.41 0.26 18.93 0.13 55.72 0.29

CV3 1 0 0 1 1 1 4.30 0.18 28.41 0.20 30.23 0.16

CV4 1 1 0 1 0 0 2.87 0.12 18.93 0.13 24.28 0.13

CV5 1 0 1 0 0 1 6.41 0.26 18.93 0.13 55.72 0.29

CV6 0 1 0 0 1 1 4.02 0.17 26.90 0.19 24.29 0.13

CV7 0 1 0 0 1 1 4.02 0.17 26.90 0.19 24.29 0.13

B1 0 0 1 1 1 0 2.87 0.12 30.17 0.21 24.89 0.13

Day 1: εk 6.1 1.74 5.32 0.78 2.52 7.8 ∑ εk = 24.17 Calibration Data

Day 2: εk 14 11.93 16.84 30.87 42.8 25.96 ∑ εk =142.4 Verification Data

Day 3: εk 47.14 12.41 60.46 13.3 0.91 59.55 ∑ εk =193.77 Verification Data

The CEF and CER provides an initial indication for magnitude and ranking of the
deviating conveyor(s), respectively, for starting the investigation process. As it can be
noted, the CEF values on Day 1 are low as the data is used for calibration. On Day 2
operational data, the CER indicated the conveyor CV1 and the bin B1 to be contributing to
the deviation, although the CEF value is low compared to the total production data and
the values are similar to other conveyors. On Day 3, the CER value highlights CV2 and
CV5 as top-ranked conveyor contributing to the deviation. Also, the magnitude of CEF is
higher than the other conveyors. At this stage, the value of CEF is within 5% of the total
accumulated mass of conveyor CV2 and CV5, which can be within the limits of the sensor
accuracy (+/−0.5%). Furthermore, longitudinal data of multiple months are needed to set
the limit of statistical significance.

To further test the calculation of the correlation matrix, values of CER and CEF, two
hypothetical test cases were carried out as shown in Table 6. The efficiency value of the
conveyor CV4 and CV7 were changed by 10 % in Test 1 and 2, respectively. The method
detected CV4 to be deviating and the magnitude of CEF was also significantly increased.
For Test 2, changing CV7 resulted in an alert for both CV6 and CV7 because of the possible
relations which are created using the correlation matrix. This is limited by the virtue of
plant layout and conveyor connections. Also, it is observed between Test 1 and 2, the
magnitude of CEF is dependent on the size and capacity of the conveyor as CV4 is of higher
capacity than CV7 which need to account into the decision for conveyor recalibration.
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Table 6. Testing of CEF and CER values for hypothetical test cases.

Correlation Matrix Day 1 Test 1 Test 2

Apk ε1 ε2 ε3 ε4 ε5 ε6 CEF CER CEF CER CEF CER

CV1 0 0 1 1 1 0 2.87 0.12 42.28 0.11 11.81 0.12

CV2 1 0 1 0 0 1 6.41 0.26 42.28 0.11 11.81 0.12

CV3 1 0 0 1 1 1 4.30 0.18 60.76 0.16 15.05 0.16

CV4 1 1 0 1 0 0 2.87 0.12 118.06 0.32 12.33 0.13

CV5 1 0 1 0 0 1 6.41 0.26 42.28 0.11 11.81 0.12

CV6 0 1 0 0 1 1 4.02 0.17 43.96 0.12 27.81 0.29

CV7 0 1 0 0 1 1 4.02 0.17 43.96 0.12 27.81 0.29

B1 0 0 1 1 1 0 2.87 0.12 42.28 0.11 11.81 0.12

Day1: εk 6.1 1.7 5.3 0.7 2.5 7.8 ∑ εk = 24.17 Calibration Data

Test 1: εk 113.6 121.5 5.3 119 2.5 7.8 ∑ εk = 369.86 Change in CV4 efficiency by + 10%

Test 2: εk 6.1 30.1 5.3 0.7 29.3 24 ∑ εk = 95.64 Change in CV7 efficiency by + 10%

6. Discussion

The development within the Internet of Things (IoT) is one of the underlying factor
attributing towards making digitalization innovation [30]. The development of a data
collection system for the aggregate production industry can drive it towards industry 4.0.
The presented methodology of conveyor calibration and deviation measurements is one
of the building blocks in achieving a complete digital support system for an aggregate
production plant.

The optimization problem formulation for the non-accessible conveyors is based on the
circuit property of mass balancing and is also in line with the data-reconciliation methods
applied [19,22]. However, the problem definition is simpler for aggregates processing
compared to minerals processing. The modification of the sensor variables such as the
efficiency of the power-based belt scale is proposed using the data reconciliation. The
optimization problem (See Equation (10)) can be made more flexible by changing the
objective function or by adding error function(s) as constraint(s) to allow for variability in
the system. The objective function for error minimization can be posed as a weighted-sum
approach based on historical data such as conveyor performance, maintenance, and their
associated error function. As the first order error function at nodes (See Equation (13), ε1
and ε2) can be of higher importance as compared to the second-order error function derived
by a combination of two error functions (See Equation (13), ε6). Further investigations
are needed to check these possibilities and capture longitudinal validation of the mass
flow data. The current work is limited to perform statistical analysis of the variance and
distribution of the data.

The correlation matrix is a function of the plant layout. The correlation matrix repre-
sents a relationship between the conveyors and the error associated with the circuit mass
balancing. If the plant layout is highly coupled, based on the mass balancing, several
error equations can be formulated. For example, if the circuit is closed with recirculating
load, then the set of representative mass balancing equation increases. Depending on the
plant configuration, the implementation of the deviation measurements equations needs
to be adjusted. The application of the correlation matrix and deviation measurements
can also be extended to other mass flow measurement techniques such as load-cell belt
scale, laser sensor and ultrasonic sensor. The deviation measurement can also be used as
a smart maintenance alert system. This can be used to send a notification to the operator
or plant manager to check the physical change in the conveyor operations. The operator
can perform checks such as observing conveyor alignment, roller and belt contact, jammed
material in conveyor, wear, and so on to investigate the deviating conveyor. Other aspects
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that can add value to this are feedback from stockpile data of accumulated mass which can
further cross-validate the measurements. If there is no reasonable cause for the deviation,
the operator can choose to re-calibrate the system for the deviating conveyor. In this case,
it is assumed that the deviation is caused by a gradual change in the total efficiency of
the conveyor.

From the industrial point of view, the major benefit of the proposed method is that it
could create a reliable mass flow measurement with less intervention. That will, in turn,
give more accurate follow up of production rates and stock values, giving the possibility to
make fact-based decisions on how to set up the production process. A system that detects
deviations in the mass flow balance would probably also work well in detecting errors in
the process that are normally not detected by the current control system. One example
could be a hole in a chute after a screen causing contamination between two products
which could generate large costs if it is not detected at once. The next step with the work is
to evaluate the statistical limits for the deviation measurements and test the methodology
for a longer period (month, year).

The methodology will be evaluated for a real-time/online system, wherein recent
historic data can be continuously evaluated (moving deviation measurements) [31]. One
possibility is to reduce the calculation window for deviation measurement from 1 day of
accumulated mass to a smaller time window such as 1 h, 30 min or 10 min. Aspects
that could be in consideration here are residence time of the material in the various
equipment, delays due to stops in the process, etc. This can also enable the controlling
of the aggregate production process using Key Performance Index (KPI) such as Overall
Equipment Effectiveness (OEE) [9], wherein the underlying data set are of higher quality
and confirms the mass balancing property of the system. The potential advantage with
the implementation of such a solution is that it can be a cost-efficient solution that can
potentially reduce the number of physical calibrations required for a power-based belt
scale. This implies the reduced downtime of the system and can enable condition-based
maintenance instead of corrective maintenance. The method needs to be evaluated for its
robustness using a longitudinal study.

7. Conclusions

The research paper presented an application of the optimization method for the
calibration and maintenance of the power-based belt scales. Furthermore, a novel approach
towards tracking deviation in the mass flow measurements using the correlation matrix
is presented. The method is dependent on the plant layout and mass flow connections
and uses the mass balancing property of the crushing plant operation. The accuracy in the
mass flow system is assured by performing a careful calibration process for both accessible
and non-accessible conveyors. The reliability of the system is improved by monitoring the
deviation in measurement. Periodic calibration of the accessible conveyors is also required
to maintain trust within the data collection system. This is a step towards developing a
robust mass measurement solution where the system can detect changes. The proposed
methodology can lead to design rules for the implementation of an automatic calibrating
mass flow system using a power-based belt scale technique.
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Abstract: There is a need within the production industry for digitalization and the development
of meaningful functionality for production operation. One such industry is aggregate production,
characterized by continuous production operation, where the digital transformation can bring
operational adaptability to customer demand. Dynamic process simulations have the ability to
capture the change in production performance of aggregate production over time. However, there is
a need to develop cost-efficient methodologies to integrate calibrations and validation of models. This
paper presents a method of integrating an experimental and data-driven approach for calibration and
validation for crushing plant equipment and a process model. The method uses an error minimization
optimization formulation to calibrate the equipment models, followed by the validation of the process
model. The paper discusses various details such as experimental calibration procedure, applied error
functions, optimization problem formulation, and the future development needed to completely
realize the procedure for industrial use. The validated simulation model can be used for performing
process planning and process optimization activities for the crushing plant’s operation.

Keywords: optimization; comminution; classification; digitalization; dynamic process; data-driven
modeling; aggregate production

1. Introduction

Crushing and screening processes in aggregate production are intended to produce
various sets of products based on size fraction. These products are used for different
construction activities such as roads, railways, and infrastructure. Managing and operating
a crushing plant to the need of market demands is a challenge for the industry, and there is
a need for a digital support system for operators and managers of aggregate production
processes. Despite the modeling and simulation development of the crushing plant [1–3],
there are barriers within the industrial operation to use simulations for daily operation
management. There is a constant need for maintenance of the validity of the underlying
simulation model for the gradual changes occurring in the daily operations.

To address the need for increased functionality for the simulation environments to
support daily operation, an optimization system for aggregate production is proposed,
as shown in Figure 1 [4–6]. To make the decision based on the simulation model of
equipment and process, referring to an aggregate crushing plant, there is a need to develop
a calibration and maintenance routine for process simulation to derive useful and reliable
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results from the optimization function [7–10]. Based on the choice of the equipment model
in the process simulation, a continuous validation routine for effective use of the process
simulation is required [6,11].
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Figure 1. Error propagation model for the implementation of the optimization functionality in
crushing plants [4].

This paper presents a methodological routine to calibrate and validate process simula-
tions for industrial aggregate crushing plants (see Figure 1, red box). The application of an
optimization method is presented to calibrate and tune equipment models based on the
controlled data obtained from experimental design and survey. The applied optimization
method uses an unconstrained gradient-based algorithm for calibration and tuning pur-
poses, which is a computationally viable solution. This is followed by the configuration and
validation of the dynamic process simulation based on mass flow data input, as captured
during the controlled experiment.

2. Process Modeling and Simulation Approach

There are various fidelities of models present for the comminution and classification
equipment. For example, a crusher performance is described in detail by mechanistic
principles by Evertsson [12], an empirical model by Whiten [13]. Similarly, multiple
empirical, phenomenological, and mechanistic screen models are described by Karra [14],
Whiten [15], and Soldinger [16,17], respectively. King [18] presented extensive work to
demonstrate the need for using a reliable simulation model for improving crushing plant
performance by using a case study of uranium production. The models are developed
based on certain underlying assumptions on process stability and utilize both laboratory
and industrial experimental data to be calibrated. With the current trends of increased
transition to online data management systems and data analytics [19,20], the opportunity
has emerged to utilize the existing knowledge within the models to adapt to the production
data available. Alternatively, one can also approach the path of machine learning models
to capture the behavior of the process performance using continuous time-series data
(production data), as demonstrated by Li et al. [21,22].

The development in the dynamic process simulation for crushing plants [1,23] pro-
vides opportunities to integrate equipment models into the continuous process performance
estimations. Integration of calibration methodologies for the dynamic process models to
the digital data collection system such as mass flow and power draw can be a powerful
and cost-efficient tool. The integration between the dynamic process simulation and on-
line data capturing techniques can eliminate or reduce expensive survey sampling and
laboratory test work. To address the abovementioned gaps, there is a need for developing
methodologies that can support such system integration.

Figure 2 represents a schematic view of the pillars for the model calibration for equip-
ment and process simulation applicable for the crushing plants. The laboratory data refer
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to the material characterization data obtained by carrying out standard material tests,
for example, material density, compressive stress, moisture content, breakage, etc. The
experimental survey data refer to the controlled experiments performed at the crushing
plant site using full-scale equipment to collect belt-cut samples for mapping equipment
performance. This provides a snapshot indication of the process and equipment perfor-
mance. The production data refer to the controlled data collected from the process plant
operation, such as mass flow, power, process setpoints, and control signals. This delivers
continuous data based on the complete operation of the plant, which is influenced by
more than one equipment behavior. The transformation of the existing mechanistic or
phenomenological models to use and adapt to different data sources needs computationally
efficient optimization methods to fit the model to the data. There is a need to re-clarify the
assumptions based on the selected model type.
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2.1. Dynamic Process Simulation

The dynamic process modeling approach used in this study is based on the work by
Asbjörnsson [1], and the process model is configured in MATLAB/Simulink environment.
This modeling approach can capture discrete and gradual changes occurring in the physical
crushing plant operation, such as delays in material flow, start-up sequence, discrete events,
and wear. Each equipment model is based on the mathematical description of mass m and
properties γ in a derivative form with respect to time, as shown in Equations (1) and (2).

dm(t)
dt

= (
.

mi,in(t)−
.

mj,out(t)) (1)

dγi(t)
dt

=

.
mi,in(t)

m(t)
(γi,in(t)− γi(t)) (2)

The material flow is regulated using interlocks and regulatory controllers. The lag
and response of the process operation due to the hold up of material in equipment such as
conveyor and feeder is described by Equations (3) and (4), where t is the current time step,
θ is the delay time, τ is a time constant, K is a steady-state process gain, u(t) is the input
parameters, and y(t) is the system output.

y(t) = u(t− θ) (3)
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τ
dy
dt

+ y(t) = Ku(t) (4)

2.2. Crusher Model

The model used for the crusher is a fast mechanistic model based on Evertsson [12]
and implemented into dynamic simulation by Asbjörnsson et al. [24]. Figure 3 represents
an overview of the interface of the crusher model. The model uses inputs such as material
feed stream (consisting of material properties, product size distribution, and mass flow),
crusher geometrical design and setting, material breakage, selection characterization, and
flow characterization. The model is called fast as compared to the full-scale mechanistic
model [12], as the recursive calculation of the flow model of the dynamic material inter-
action with the geometry is simplified with user-defined input (e.g., fixed compression
number). Furthermore, the force resolution for predicting pressure and corresponding
power calculation is simplified with the Bond equation [25].
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Figure 3. Overview of the fast-mechanistic crusher model implemented in Matlab/Simulink environment.

The property changes after each compression are sequentially calculated based on
the defined compression zones using the input from the dynamic module; see Figure 4.
The selection (S) and breakage (B) functions are based on the nominal response of the
compression tests carried out for a particular material type [12].
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2.3. Screen Model

The screen model used is based on the Whiten [15] expression (Equation (5)), and a
simplified model interface is shown in Figure 5. The model uses inputs such as material
feed stream, screen geometrical design and settings, model parameter (separation size
and sharpness), and outputs the separated material streams. Equation (5) represents
the reduced partition curve (Eoa) to calculate the oversize material stream, where α is
the sharpness of the separation, di is the geometric mean of the size interval i, d50 is the
separation size, E is the efficiency at the screen aperture, and A is the screen aperture. In
this work, the survey data are used to back-fit the model parameter and tune the screen
aperture based on the noted data. A modification in the α parameter is applied where
the value of the α is linearly dependent on the mass flow stream to capture the effect of
different loading conditions with respect to the partition of the stream.

Eoa =
exp(αxi)−1

exp(αxi)+exp(α)−2

xi =
di

d50

d50 = αA
ln[( 100

100−E−1) exp(α)+( 100
100−E−1)−2]

(5)
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3. Applied Experimental Method Description

A systematic method is applied to calibrate a full-industrial scale crushing plant
using physical experimentation and validated using production data. The methodology
consists of multiple steps, which include process mapping, experimental design, and data
collection, with a physical survey leading to laboratory data and production data. This is
followed by an applied optimization method for equipment calibration and validation of
the process simulation.

3.1. Process Mapping

Figure 6 shows the tertiary crushing process stage of an aggregate production site in
Sweden. The circuit consists of an H36 crusher followed by two consecutive double-deck
screens producing four sellable products. The equipment is interconnected with conveyors
which have mass flow measurement units installed. The mass flow units are also connected
to cloud-based data storage. The plant is manually controlled by operating the crusher
with the operator-defined settings, and the mass flow of the fresh feed (CV2) from the
stockpile is manually regulated.
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Figure 6. Tertiary crushing process for an industrial-scale aggregate production plant.

3.2. Experimental Design and Data Collection

To map the performance of the crusher, screens and process, an experimental design
was applied, as shown in Figure 7. The details of the observed process settings and belt-cut
points are shown in Table 1.
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Table 1. Experimental noted values for the crushing plant.

Test ID CSS Setpoint
(mm)

CSS Calibration
(mm)

CSS Re-Check
(mm)

Operation Time
(min) Belt-Cut Sampling Point

T01 12 11.5 12.5 25 CV (3, 4, 5, 6, 7, 8, 9,10)
T02 15 15 15 25 CV4, CV5
T03 17 16.5 17.5 25 CV4, CV5
T04 19 18 19 25 CV (3, 4, 5, 6, 7, 8, 9,10)

• A series of four experiments were performed consisting of crusher closed-side setting
(CSS) calibration, crusher operation, crusher CSS re-check, followed by a crash stop
of the circuit for belt-cut sampling. The rationale behind the chosen incremental
crusher set points is based on the type of crusher, top size particle in incoming feed,
and the practical possibility of operation. The crusher CSS was calibrated and re-
checked using hard clay to observe the deviation in the setting before and after the
continuous operation.

• Continuous operation of the crusher at the choke feed condition and steady-state
process condition was performed to capture continuous data for mass flow. The
crusher was operated for 25 min to be able to capture a minimum of 20 min of the
steady-state performance condition.

• The circuit was crash-stopped to perform the belt-cut sampling at various conveyor
points based on the experimental plan. For all four test runs, crusher feed and
product were sampled. For the screen calibration, two experimental tests (T01 and
T04) captured the belt cut samples for screen feeds and products. The rationale behind
choosing these two tests was to capture the screens’ performance at two loading
conditions: low CSS (T01) created a high load on screen 2 (high generation of fine
material), while high CSS (T04) created a high loading condition in screen 1 (high
generation of coarse material).

• The belt-cut sampling lengths (1–3 m) were selected based on the top size of material
on the conveyor, uniformity of material distribution, and material weight required to
achieve statistical significance based on top size [15,26]. The samples were limited to
include replicates. Sieving analysis was performed on each sampled material using
SS-EN 933-1:2012 standard [26]. For the survey data, a basic check was performed if
the data set was in line with the knowledge of the equipment. For example, opening
the CSS of the crusher should lead to increased production of coarse products.

3.3. Applied Optimization Method

Based on the sieving analysis on the belt-cut sampled material at various settings,
an optimization method is applied to fit the model to the data. An illustration of the
applied calibration and validation process is demonstrated in Figure 8. In particular,
the crusher and screen models are calibrated to the experimental belt-cut data for which
the detailed optimization problem formulation is presented. The optimization problems
formulations presented for crusher and screen are solved using an unconstrained gradient-
based approach, the Quasi-Newton Method [27]. The advantage of using this approach is
that it is computationally efficient, although it can be sensitive to the start point if multiple
local minima exist. To address the limitation with the local minima, the optimization
problems were solved at multiple combinations of start-points to obtain the optimizer and
optimum value. The solution sets were evaluated based on the optimum values (sorted
with lower values) and corresponding optimizer values. For low optimum value solutions,
the optimizers were compared, and if they were found to be in close vicinity of other similar
solutions, the local minima were regarded as representing global minima. The application
at this stage is limited to evaluate the sensitivity of the optimizer to the optimum value.
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Figure 8. The steps for calibration and validation of dynamic process simulation of the crushing plant.

3.3.1. Crusher Optimization Problem Formulation

The crusher model is calibrated in two steps: Capacity Optimization and Product
Size Distribution (PSD) Optimization. The fast-mechanistic model consists of 10 tuning
variables (model parameters) corresponding to inter-particle breakage (x1, x2, x3, x4), single
particle breakage (x5, x6, x7, x8), selection (x9), and nipping angle (x10). Depending on the
choice of functions used inside each module in the model, the number of variables to be
tuned can vary. The choice of the two sequential optimization problem formulations for the
crusher is based on the representation of two distinct performance indicators (capacity and
PSD) and their relationship with the model variables. In the Capacity Optimization (See
Equation (6)), the objective function is to minimize the sum of the relative errors between
the crusher-measured capacity (CapDi) and the simulated capacity (CapSi) for the n number
of tested settings of CSS.

min
n
∑

i=1

∣∣∣ (CapDi−CapSi)
CapDi

∣∣∣
w.r.t→ xk, [k = 10]

where,

[xk]0 = [1]

n = 4

Optimizer = x∗k

(6)

In the PSD Optimization for the crusher (See Equation (7)), the objective function is to
minimize the weighted (wj) sum of errors for the data (PSDfDji) and the simulation (PSDfSji)
for the values of the n number of tested settings. The PSD values are in the frequency
domain for the m number of given sieve sizes (xsize), and mat represents the nominal
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material characterization values for a given material type. The PSD in the frequency and
the cumulative domain is in fraction passing for the sieve size.

min
n
∑

i=1

m
∑

j=1
wj
∣∣(PSD fDji − PSD fSji)

∣∣
w.r.t→ xk, [k = 1, 2, . . . , 9]

where,

[xk]0= [1 1 1 1 1 1 1 1 1]

n = 4, m = 25

Optimizer= x∗k ·mat

(7)

The weighted function (wj) is given in Equation (8), which is a function of the sieve size
used in the simulation. The purpose of the weighted function is to steer and compensate
for the distribution of the number of data points available at different sieve size ranges.
The distribution is defined by the square root 2 series ranging from 63 µm to 360 mm. The
function weighs higher on the coarse end of the particle size compared to the fine end
of the particle size range. The weight on the smallest sieve size is set to 1 to prevent the
tail of the sieve size from under compensating for the fine sieve size range. A graphical
representation of wj is shown in Figure 9.

zj = log2(xsizej) + |log2(min(xsize)|

wj =

 zj/(max(z))∀(j = 1, 2, . . . , 24)

1, (j = 25)

where,

xsize = [360; 250; 125; 90; 63; 45; 31.5; 22.4; 16; 11.2; 8; 5.6; 4; 2.8; 2; 1.4; 1; 0.7; 0.5; 0.35; 0.25; 0.177; 0.125; 0.088; 0.063]

(8)
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Figure 9. Graphical representation of the weighted function used in the optimization problem formulation.
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3.3.2. Screen Optimization Problem Formulation

The screen model variables are tuned based on the objective to minimize the sum of
errors between measured product size distribution (PSDfDji) and simulated product size
distribution (PSDfSji) for p output material stream measured at n test settings for the m
sieve sizes. Equation (9) presents a generalized optimization problem formulation for a
double-deck screen. The aperture (Ad), efficiency at the aperture size (Ed), and sharpness
parameter (αd) are tuned based on the initial given values. The subscript d represents the
notation for the position of the deck (d = 1 for Deck 1 and d = 2 for Deck 2).

min
p
∑

s=1

n
∑

i=1

m
∑

j=1

∣∣∣((PSD fDji)s − (PSD fSji)s)
∣∣∣

w.r.t→ xk, [k = 1, 2, . . . , 6]

where,

[xk]0 = [αd, Ad, Ed]∀d

n = 2, m = 25, p = 3

Optimizer = x∗k

(9)

Depending on the loading condition of the screen, the sharpness parameter αd is
described as a linear function of the mass flow mdi(t) for each screen deck (d) and the
number of test settings (n); see Equation (10), where ad and bd are fitting parameters. In
the case of an over-utilized screen, the sharpness parameter αd can be assumed to also be
dependent on the mass flow and product size distribution composition due to the changes
in the incoming feed into the screen. In this case, the optimization problem shown in
Equation (9) needs to be solved independently for each value of the test setting n.

αdi = f (ad, bd) = ad·mdi(t) + bd

i = 1, . . . , n

d = 1, 2

(10)

3.3.3. Production Data Collection and Filtering

The plant was equipped with load-cell sensors (OJ1436 smart Belt Weigher Indicator)
for mass flow measurement at different conveyors (See Figure 6) [28]. The measurement
accuracy is ± 1% with normal maintenance according to the manufacturer’s specification.
The OJ1436 calculates a new mass flow rate every 50 ms (20 Hz) and updates the total once
per second (1 Hz) locally. This flow rate and total data are transferred to the online system
(smartTONNES) once per minute (0.0167 Hz). The flow rate is transferred to the online
system (average mass flow rate for the last minute based on the average of 60 readings)
using an inbuilt router with an internet connection. The data for the plant were accessed
using a custom-written code through API (Application Programming Interface). The data
collected were post-processed to eliminate outliers (e.g., negative values, conveyor rated
belt-scale values), and steady-state operation data were extracted. The mass balancing of
the average data was checked for the different experimental settings. If the error was within
the sensor variation, the data set was kept to the original; otherwise, data reconciliation
could be performed.

4. Results

The results present the calibration of the crusher and screen models to the experimental
belt-cut data. This is followed by the configuration and validation of the process simulation
results against filtered production data.
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4.1. Crusher Calibration

Figures 10 and 11 present the crusher calibration results for different tested CSS in
the frequency domain and cumulative domain, respectively, for the optimization problem
posed in Equation (7). The converged optimization solution resulted in an optimum value
of 0.387 and an optimizer value of x1 to10 as 0.60, 0.30, −0.14, 0.64, 1.55, 0.83, −0.77, 0.75,
1.06, 0.80. The variables of the crusher model are found to be sensitive to the objective
functions. It can be noted that the simulation is capable of representing the captured data.
The weight function applied in the optimization problem formulation (see Equation (7))
helped to balance-fit the model well within the coarse operational region (sieve size above
2 mm), which is required for the aggregate process plant compared to the overfitting
of the model in the fine region (sieve size below 2 mm) because of the multiple close-
spaced data points. It was also found out that it was crucial to work with the frequency
domain for optimization problem compared to the cumulative domain as the former avoid
accumulated error in different sieve size data. In essence, the problem was decoupled for
every sieve size fraction and test condition. The numerical application of the Quasi-Newton
method for solving the optimization problem as an unconstrained gradient-based approach
was found to be computationally efficient.
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Figure 10. Crusher calibration result to the belt-cut experimental data in the frequency domain.
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Figure 11. Crusher calibration result to the belt-cut experimental data in the cumulative domain.

4.2. Screen Calibration

Screen 1 was calibrated for each test load condition (T01 = 110 t/h and T04 = 134 t/h),
and the parameter α was linearized to the mass flow for each deck in the double deck
screen (See Equations (9) and (10)). Figure 12 presents the screen 1 calibration result for
test conditions a) T01 and b) T04 in the cumulative domain. The optimizer values obtained
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are a1 = −0.75, b1 = 37.9, a2 = −0.53, b1 = 26.64, A1 = 22.02, A2 = 10.03, E1 = 95, and E2 = 95.
It was noted that the value of the aperture and efficiency at the aperture remained around
the initial point while the variables associated with sharpness changed to fit the data due
to the varied sensitivity of individual variables to the objective function.
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Figure 12. Screen 1 calibration results for (a) T01 and (b) T04 in the cumulative domain.

Screen 2 was calibrated for the combined test load condition (T01 = 54.66 t/h and
T04 = 39.90 t/h) as per Equation (9). Figure 13 presents the screen 2 calibration result
for test conditions a) T01 and b) T04 in the cumulative domain. The optimizer values
obtained are α1 = 9.30, α2 = 5.91, A1 = 7.70, A2 = 5.86, E1 = 94.50, and E2 = 94.69. Both
the calibrated results of the screen 1 and 2 models show satisfactory mapping to the
data. However, it should be noted that the sampling for the screen performance using
the experimental belt-cut method captures a snapshot of the screen performance. It was
also noted that a discretization error could exist in the model, which is a function of the
selected sieve size range. The fitting behavior of screen 1 (Figures A1 and A2) and screen 2
(Figures A2 and A4) calibration results for test conditions T01 and T04 in the frequency
domain is presented in Appendix A.
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Minerals 2021, 11, 921 13 of 19

Figure 14 presents the partition curves for (a) screen 1 and (b) screen 2 (see Equation (5)).
As mentioned earlier, the screening sharpness of screen 1 is dependent on the incoming
mass flow, which is the function of the crusher product for the two-test condition (T01 and
T04). T01 is the minimum setting in the crusher CSS, producing a high proportion of fines
with low mass flow condition, while T04 is operating at maximum CSS, producing a low
proportion of fines and higher mass flow. These two outputs first interact with the top deck
of Screen 1, which results in screen performance variation with the loading condition. To
further investigate this, the product quality of the screened material is plotted in Figure 15. It
is evident from Figure 15a that the recirculating product (P16+ mm) and product P8/16 mm
have a higher carryover of the oversize material from the test T01 compared to the test T04
condition, while the product P0/8 mm has the vice versa response. This is the evidence where
the two screening curves in Figure 14a are moving in the opposite direction with the loading
condition change. On the contrary, the response of screen 2 is similar for both loading
conditions (See Figures 14b and 15b). It can be noted that the product P2/4 mm consists of a
high proportion of undersize and oversize, which is a common phenomenon at this fraction
size that can be caused due to screen clogging, wear, and moisture issues. The product is
sometimes certified as P2/5 mm depending on the market need and product quality.
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Figure 14. Screening partition curves for the two screens. (a) Screen 1 and (b) Screen 2.
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Figure 15. Product quality of the screened products at different test conditions of (a) screen 1,
(b) Screen 2, where RS—Regular Size, OS—Over Size, and US—Undersize for the particular product
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4.3. Process Validation

Figure 16 presents the comparison of various product streams from the dynamic
process simulation to the production data captured from the mass flow system for the
four test conditions (T01–T04: left to right). It can be observed that the process simulation
captures the right trend, phase, and magnitude of the production for different product
fractions, while certain discrepancies exist with the mass flow values.
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Figure 16. Dynamic simulation process results compared with the online production data for the four test conditions.
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Table 2 presents the root mean square error (RMSE) values for each product stream
and test condition. As can be noted from the RMSE, values are low for most cases, except
Product P8/16 mm and P16+ mm. The origin of the error can be either associated with
the crusher model, screen model, or production data. The crusher and screen models
were calibrated to the snapshot performance captured from the experimental samples,
and despite the controlled procedure, inherent variations exist in the process performance,
which could result in such deviation. Up to 8–12% RMSE values, together with the visual
scrutiny, have been shown to be acceptable for minerals processing application for a
particular product flowrate [11]. Overall, the process performance prediction is satisfactory
to use such models for process optimization and process planning for aggregate production.

Table 2. RMSE calculation between process simulation and production data.

Product Stream T01 T02 T03 T04

Crusher Product 6.42 3.90 3.22 3.40
P8/16 mm 14.38 6.05 4.20 8.75
P16+ mm 5.10 8.40 11.38 7.72
P4/8 mm 2.56 0.70 1.77 1.48
P2/4 mm 2.06 0.78 1.28 1.01
P0/2 mm 1.90 2.42 2.22 1.50

Figure 17 presents product yield for different product streams obtained from experi-
mental data of the absolute crusher performance compared to the values obtained from the
production data. It can be commented that the dynamic screen performance is causing the
difference between the values, especially at the coarser end of the products. To achieve a
better production rate, it is important to consider both the crusher and screen process and
their interaction effects, which can be simulated in a well-calibrated process simulation.
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5. Discussion

The methodology for utilizing the existing model capabilities (crusher and screen)
to adapt to the experimental data of an industrial scale crushing plant is shown. The use
of mechanistic [12] or well-established phenomenological models [15] helps to generate
knowledge about the equipment and process relations, rather than treating the process
as a black-box system. This is needed to carry out process improvement and process
optimization and interpret the appropriateness of the results for practical application. The
operational strategy of the crushing plant operation can play an important role in the
utilization of the dynamic process simulation capabilities. The plant under consideration
was manually operated, which limited the inclusion of a feedback control loop in the
process simulation.

Optimization problem formulation for product size distribution in the frequency
domain is utilized for both the crusher and screen model, which resulted in a low error in
model fitting. The choice of the optimization algorithm was based on the simplicity of the
application, although other algorithms can also be applied to solve the defined problem.
It is important to understand the sensitivity of each variable towards the output of the
model as it helps in interpreting the optimization results in the model calibration. Usually,
the algorithm is not supplied with the gradient values, and the gradient in the problem
solution is estimated using numerical methods using the model response. One needs to be
aware of these responses to understand optimizers in relation to the physical meaning of
the model.

The experiment performed in this paper used two different sources of data (belt-
cut samples and online production data) for calibration and validation of the process
simulations. Knowing the limitation and applicability of the individual equipment model
can pave the way to utilize the production data for the process calibration. The optimization
problem can then be posed as a constrained-based optimization. This will be investigated
to develop a method to calibrate the process simulation based on the production data
(see Figure 8), which can further eliminate the costly experimental belt-cut sampling
procedure. This development is needed for the easy use of the process simulation for
industrial applications for daily operation. Further equipping the physical process with
different sensors (power, mass flow, product size distribution) and connecting it to the
cloud system for easy access are needed to completely utilize the benefits of the digital
transformation. Further inclusion of the full-mechanistic crusher and screen model into the
process simulation can lead to studies for the effect of major equipment level change (e.g.,
crusher liner, screen cloth) into production performance change.

6. Conclusions

A method consisting of controlled experimental design including belt-cut sampling
together with the production data collection and application of an optimization approach
to calibrate the dynamic process simulation for a crushing plant are presented. This was
followed by validation of the process simulation with respect to the production data. A
novel unconstrained optimization problem formulation for different crusher and screen
models was presented. The use weighting function to generate a good fit of the crusher
model was shown together with the application gradient-based algorithm (Quasi-Newton
Method) to solve the optimization problem. The configured process model using calibrated
equipment models was compared with the production data, which showed a low error
value. The interaction effect between the crusher performance and screens performance
was demonstrated, and one needs to consider a systems perspective to effectively utilize
the process simulation capabilities.
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Figure A1. Screen 1 calibration results for T01 in the frequency domain.
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Figure A2. Screen 1 calibration results for T04 in the frequency domain.
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Figure A3. Screen 2 calibration results for T01 in the frequency domain.
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Figure A4. Screen 2 calibration results for T04 in the frequency domain.
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ABSTRACT 

Responsible production and minimal consumption of resources are becoming competitive factors in the 

industry. The aggregates and minerals processing industries consist of multiple heavy mechanized 

industrial processes handling large volumes of materials and are energy-intensive. One such process is 

a crushing plant operation consisting of rock size reduction (comminution) and particle size separation 

(classification) processes. The objective of the crushing plant operation for the aggregates industry is to 

supply specific size fractions of rock material for infrastructure development, while the objective in 

minerals processing is to maximize material ore throughput below a target size fraction for the 

subsequent process. The operation of a crushing plant is complex and suffers variabilities during the 

process operation, resulting in a drive for optimization functionality development. Process knowledge 

and understanding are needed to make proactive decisions to enable operations to maintain and elevate 

performance levels.  

To examine the complex relationships and interdependencies of the physical processes of crushing 

plants, a simulation platform can be used at the design stage. Process simulation for crushing plants can 

be classified as either steady-state simulation or dynamic simulation. The steady-state simulation models 

are based on instantaneous mass balancing while the dynamic simulation models can capture the process 

change over time due to non-ideal operating conditions. Both simulation types can replicate the process 

performance at different fidelities for industrial applications but are limited in application for everyday 

operation. Most companies operating crushing plants are equipped with digital data-collection systems 

capturing continuous production data such as mass flow and power draw. The use of the production data 

for the daily decision-making process is still not utilized to its full potential. There are opportunities to 

integrate optimization functions with the simulation platform and digital data platforms to create 

decision-making functionality for everyday operation in a crushing plant. This thesis presents a multi-

layered modular framework for the development of the optimization capabilities in a crushing plant 

aimed at achieving process optimization and process improvements. The optimization capabilities for 

crushing plants comprise a system solution with the two-fold application of 1) Utilizing the simulation 

platform for identification and exploration of operational settings based on the stakeholder’s need to 

generate knowledge about the process operation, 2) Assuring the reliability of the equipment model and 

production data to create validated process simulations that can be utilized for process optimization and 

performance improvements. 

During the iterative development work, multiple optimization methods such as multi-objective 

optimization (MOO) and multi-disciplinary optimization (MDO) are applied for process optimization. 

An adaptation of the ISO 22400 standard for the aggregates production process is performed and applied 

in dynamic simulations of crushing plants. A detailed optimization method for calibration and validation 

of process simulation and production data, especially for mass flow data, is presented. Standard 

optimization problem formulations for each of the applications are demonstrated, which is essential for 

the replicability of the application. The proposed framework poses a challenge in the future development 

of a large-scale integrated digital solution for realizing the potential of production data, simulation, and 

optimization. In conclusion, optimization capabilities are essential for the modernization of the decision-

making process in crushing plant operations. 

Keywords: Modelling, Dynamic Simulations, Crushing, Screening, Process Optimization, Process 

Improvement, Digital Twin, Multi-Disciplinary Optimization (MDO), Multi-Objective Optimization 

(MOO), Key Performance Indicators (KPIs), Calibration, Production Data 
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1 INTRODUCTION 

This chapter aims to: 

 Introduce a generic overview of a crushing plant. 

 Provide an outline of the need for optimization capabilities in crushing plant operations. 

 Introduce the area of research and the scope for the development of optimization 

capabilities.  

 Formulate the research questions. 

 

Infrastructure development is one of the cornerstones of human success in modern times and facilitates 

economic growth and mobility. Modern infrastructure developments such as roads, railways, housing, 

and commercial buildings are directly dependent on the supply of crushed rock materials (aggregates). 

Aggregates are used in the construction industry as a base material and are classified into products such 

as sand, gravel, clay, and crushed stone [1]. The industrial processes used in aggregates production after 

mining activities are comminution (rock size reduction) and classification processes (particle size 

separation) [2], which are often referred to in combination as a crushing plant. Crushing plants are also 

used in the minerals processing industry for ore size reduction in the coarse particle size range. The 

common types of equipment present in a crushing plant are rock size reduction units (e.g., jaw crushers, 

gyratory crushers, cone crushers, etc.), particle separation units (e.g., vibratory screens, cyclones, etc.), 

material transport (e.g., conveyors, trucks), and material storage (e.g., bins, stockpiles, etc.). 

1.1 DRIVERS FOR OPTIMIZATION CAPABILITIES IN CRUSHING PLANTS 

According to a recent report from the European Aggregates Association (UEPG), the average 

consumption of aggregates is around 6 tonnes per capita per year within the European Union and 10 

tonnes per capita per year in Sweden [3]. According to the reports from the Swedish Geological Survey 

(SGU), the production of mineral ores in Sweden accounted for 87.9 million tonnes in 2020 [4] and 

aggerates production for 100.2 million tonnes in 2019 [5], both of which are continuously increasing 

from previous years’ production. Similar trends are also shown in worldwide mining data by the British 

Geological Survey, wherein the production volumes of major minerals (e.g., bauxite, iron ore, copper 

ore, etc.) have been increasing in comparison with data from previous years [6]. Another trend observed 

within the aggregates and minerals processing industries in Sweden is that the number of mine sites is 

decreasing while the volume of production is increasing [4, 5]. This can be attributed to many factors, 

such as improved equipment technology, stricter environmental laws, the economy of operation, 

availability of resources, changing ore conditions, and so on. In Sweden, the estimated carbon footprint 

during the processing of aggregates in a crushing plant alone (excluding mining, transportation, etc.) 

accounts for 3.5–5.4 kg CO2
 eq./ton of crushed rock material depending on the energy source – 

electricity-driven or diesel-driven [7]. Irrespective of the choice of energy, there is potential to further 

reduce the carbon footprint with improvements in the operation of crushing plants.  

Given the large volume of material processed in crushing plants (in both the aggregates and minerals 

processing industries) in a limited number of sites, there is a need and a possibility for developing 

methods that can result in more responsible production, such as improved resource- and energy-
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efficiency and reduced waste material. The increased mechanization has resulted in the automation of 

process operations, which has in turn resulted in increased throughput, process control and energy 

control. On the other side, the implication of increased mechanization has brought less flexibility in 

operation. In particular, the process operation performance has increased sensitivity to stoppages, which 

in turn is expensive for the company operating the plants. The operations of crushing plants are complex 

and require a broad understanding by the personnel involved, which is developed by training and with 

experience. This creates a need to develop methods and tools which can facilitate and support the 

operation of the crushing plant to maximize utilization within the given resources. The main driver for 

this research is the industry that wants to be competitive (profitable) and adoptive to customer demands 

and changing conditions. These drivers are also in line with UN sustainability goals (especially Goal 9: 

Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation) 

for innovation in the aggregates and minerals processing industries to increase resource-use efficiency 

in comparison with today’s performance [8].   

Crushing plant operations are often classified as a continuous production process and this process is 

complex, with interdependencies among various equipment and sub-processes. To capture these 

complex relationships, a process simulation, which is one of the cost-effective tools accepted by the 

industry, is often used. There are two types of process simulations used for crushing plants in operation: 

steady-state simulation and dynamic simulation [9, 10]. Steady-state simulation represents an 

instantaneous mass balancing of the crushing plant circuit, while dynamic simulation can imitate time-

dependent phenomena in the crushing plant circuit such as discrete and gradual changes due to material 

delays, start-up sequence, wear, control, etc. [10]. The dynamic simulation platform comes closer to 

representing the actual operations of a crushing plant than steady-state simulations. However, it is time-

consuming, complex to set up and requires expertise to interpret results. Most of the commercial 

simulation tools available to the industry are steady-state, for example, JKSimMet (JKTech) [11], 

BrunoTM (Metso:Outotec) [12], Integrated Extraction Simulator – IES (Orica) [13], Plant Designer 

(Sandvik) [14], Plantsmith (Roctim) [15], etc. The commercial software has been successful in helping 

designers to plan and create virtual crushing circuits but is limited in providing functionality such as 

optimization of production in daily plant operations. Inclusion of such optimization functionality can 

bring value to customers, wherein daily production operations can be steered in flexible ways to meet 

customer demands, especially in aggregates production. Decision support from a simulation tool can be 

useful for daily production operations in a crushing plant on the condition that the underlying models 

and process performance are calibrated and validated regularly. This implies that there is a need to 

collect appropriate data to maintain trust within the simulation systems.  

Recent technological developments and inclinations towards digitalization provide new opportunities 

for industry (coined as Industry 4.0) [16]. The question that arises here is how the companies operating 

crushing plants are taking advantage of the digitalization transitions and what the transition means at the 

functional level of the core operations. Services such as cloud-based production data collection help 

large organizations operating multiple crushing plant sites to connect and access their sites on a central 

platform. This can enable an organization to compare process performances, schedule product delivery, 

identify best practices, etc. However, the detailed needs of data collection and how it can be used for 

process improvements and process optimization in the context of crushing plant operations need to be 

investigated. Typically, continuous production data collected in aggregates production are mass flow, 

power consumption and different operational parameters from various equipment in a process. Limited 

work has been performed to integrate the existing simulation platforms for crushing plants and digital 

data collection tools present in today’s modern companies. This poses a new challenge to the crushing 

plant owners to determine how future plants should be built to operate and how to transition the existing 

plant to digital platforms. The development of meaningful optimization functionality for a simulation 
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platform in the context of crushing plant operations is one of the proposed solutions to the changing 

needs of the industry. This can enable operators and plant managers of a crushing plant to perform 

knowledge-based flexible and profitable operations. Further, the development can result in the 

democratization of the expertise knowledge of crushing plant simulations to operators and plant 

managers for everyday operation. 

1.2 CONTEXT OF OPTIMIZATION FUNCTIONALITY FOR A CRUSHING PLANT 

Figure 1 presents an overview of a generic three-stage crushing plant. The purpose of the crushing plant 

is to reduce the rock material size from up to 1000 mm to below 30 mm depending on the need for the 

aggregates products or the requirements from the subsequent steps in minerals processing. The need for 

multiple stages in a crushing plant is based on equipment technological capabilities, for example, a cone 

crusher capability is based on the top size in feed, maximum allowed reduction ratio, power rating, 

chamber type, etc. [17]. After the mining operation (blasting, drilling, etc.), the rock material is 

transported (trucks, front loaders, conveyors, etc.) to the primary crushing stage, in which the material 

is fed through a grizzly screen. The purpose of the grizzly screen is to bypass the lower size fraction 

material and feed the oversized material to the primary crusher (jaw crusher, gyratory crusher, etc.). The 

crushed rock from the primary crushing process is stored in a stockpile to create a buffer zone in 

operation and flexibility of maintenance of equipment. The material is further reduced in size in 

secondary and tertiary crushing processes, typically by using cone crushers. Material is fed to the crusher 

using a vibratory feeder, surge bin or conveyor, depending on the installation. Vibratory screens are 

used to separate the desired products and the oversize material is recirculated into the circuit. The 

material transport within the circuit is carried out using belt conveyors. The crushing plant circuit has 

certain inbuilt flexibility, such as bypassing material to re-direct flow and recirculating material for re-

crushing (closed circuit or open circuit).  

 

Figure 1. An illustration of a crushing plant circuit in relation to the value chain of aggregates and minerals 

processing. 
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In aggregates production, the aim is often to produce multiple products based on the size specification 

(e.g., 0/16 mm, 11/16 mm, 5/8 mm, etc.). There are several criteria for defining product quality for 

aggregates (e.g., grading, flakiness index, etc.) depending on the target use and certification 

requirements [18]. The need for different products in aggregates production is often dependent on the 

customer requirements and market demands, which in turn leads to the prerequisite of maintaining the 

desired stock levels in order to be competitive. It has been noted that many aggregates sites have stocks 

of over-produced products which are non-sellable due to limited demand. Although the present 

technology in aggregates production is limited to eliminating by-products, there are opportunities to 

reduce the ratio of non-desired products to desired products. For minerals processing, the target of the 

crushing plant is usually to produce materials in one or two size ranges for the subsequent processing 

steps (e.g., 0/12 mm for ball-mill feed). The product quality criteria are limited in minerals processing, 

while the focus of process operations is usually on maximizing circuit throughput of material below a 

target fraction while minimizing downtime and energy consumption.  

Managing a crushing plant for daily operations in aggregates production poses challenges as the plant 

is a complex system with interdependencies between different equipment. Mathematical optimization is 

a powerful tool that can be used to generate knowledge about a system in relation to the defined 

conditions. Papalambros and Wilde [19] defined the optimization of a system as a decision-making 

process of choosing the best alternative which meets the original need within the available means. In 

relation to the crushing plant in operation as a system, the primary value-adding functions of the system 

are size reduction and separation of rock material followed by performance aspects such as throughput, 

energy consumption and quality. The need is dependent on the objective of the plant operations 

(performance), which can differ based on the stakeholder’s perspective. For example, an operator can 

aim to minimize the downtime of process operations, a plant manager can aim to maximize process 

throughput, and a salesperson can aim to minimize the lead time to product delivery. Multiple 

combinations of operational settings are possible for various equipment (e.g., crusher settings, screen 

settings etc) in a crushing plant, which refer to the alternatives in the operation. The circuit design and 

equipment type present in a crushing plant are the available means in operation, which limits the number 

of possibilities of operation. For a crushing plant in operation, optimization capability can be defined as 

the process of choosing the best operational settings for a given circuit configuration to meet the 

performance need of the stakeholder. 

The capability of process simulation to replicate crushing plant performance and implementation in full-

scale plant design and operation has increased over the past couple of decades [9, 10, 20, 21], although 

the application to daily process operations is limited due to limited functionality. Knowledge of process 

simulation is also limited to certain experts in the companies and a wider set of users is needed to create 

a tangible impact on the processed volume in the crushing plant. Adding optimization capability can 

enhance the usability of the simulation platform and help support plant managers and operators in taking 

proactive decisions for changes in the requirements for plant operation. The use of a simulation platform 

is a more cost-efficient method than the experimental trial-and-error approach. However, multiple 

aspects, such as continuous simulation configuration, calibration, and validation, are needed to create 

reliable models for optimization. Concrete measurements of improvements achieved by optimization 

capabilities in physical plants are also required, which poses a need to evaluate the correct set of data. 

Moreover, the users (plant managers and operators) in crushing plants have expressed the desire to 

simplify the use of simulation platforms for optimization through the use of a simple push-button, which 

poses a need for investigation of methods to make this possible. To address the abovementioned 

challenges, method developments for implementing optimization capability, performance 

improvements, simulation and data reliability are presented in this thesis.  
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1.3 RESEARCH OUTLINE 

The research project aims to develop and apply optimization capabilities to crushing plant process 

simulations. The focus is on the crushing plant operation (see Figure 1), which is characterized as a 

continuous dynamic production process. The simulation platform used to replicate crushing plant 

performance is based on the dynamic process simulation in MATLAB/Simulink developed by 

Asbjörnsson [10]. The research has been developed with a primary focus on the aggregates production 

industry and with a limited scope for the minerals processing industry. The primary crushing plant 

equipment and their corresponding mathematical models included in the research are cone crushers, 

vibratory screens, belt conveyors, material feeders and bins. The objective of this research is to 

investigate different optimization methods for applications of process improvements and process 

optimization and to generate needed knowledge about the crushing plant system. Further on in the thesis, 

the use of optimization methods for process model calibration and validation, and data reliability are 

investigated. The purpose of the research is to understand and increase the process performance of a 

crushing plant in operation. The research is limited to the evaluation of crushing plant performance 

related to equipment settings and excludes human-interaction studies. Further on, the research builds on 

the previous work (e.g., dynamic simulation approach, equipment models, data acquisition system, real-

time optimization etc.) carried out by Asbjörnsson [10], Hulthén [22] and Evertsson [17]. The 

consideration of certain physical and chemical properties of the rock material, such as ore grade, is 

excluded from this work. An investigation of the influence of control systems on the dynamic 

performance of crushing plants is not included.  

1.4 RESEARCH QUESTIONS 

The scope of the thesis can be described by the following research questions, with a brief description of 

investigations carried out under each research question: 

RQ1:  What are the optimization system requirements for developing optimization 

capabilities in crushing plant operations?  

- In this research question, the aim was to investigate aspects such as the purpose of 

optimization application, problem formulation, possible optimization methods and 

algorithms, optimization results and implementation, and practical implications. It is 

assumed from the beginning that a computer-based simulation platform and optimization 

can be used as a foundation for the development.  

 

RQ2:  How can the process performance objectives be formulated for carrying out process 

optimization and process improvements in crushing plant operations? 

- Based on the preliminary findings of research question 1, the aim was to perform an 

explorative study to understand and develop process objectives suitable for improving 

crushing plant performance.  

 
RQ3:  What are the critical requirements on the process simulation platform, equipment 

models, experimental and process data to be used in the optimization system?  

- The iterative learning from the optimization application led to the need to investigate 

methods that could be used to create a reliable simulation platform for crushing plant 

optimization studies. Different data associated with crushing plants are also studied.  
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The research questions are addressed throughout the thesis and answers to them are presented in Chapter 

5 – Discussion and Conclusion. During this PhD project, several papers have been written by the author 

of this thesis which contribute to the research findings. Table 1 presents an illustration of the appended 

papers’ contributions in relation to the research questions. 

Table 1. The contribution of the appended papers to the research questions. A larger sphere represents a strong 

relation to the research question while a smaller sphere represents a minor contribution. 
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2 SCIENTIFIC APPROACH 

This chapter aims to: 

 Introduce and describe the research methodology used in this thesis. 

 Introduce research evaluation aspects. 

 Introduce fundamentals of optimization methods. 

 Describe optimization algorithms and methods used in this thesis. 

 

The research was performed in the Chalmers Rock Processing Systems (CRPS) research group, which 

is a part of the Machine Element Group, Division of Product Development at the Department of 

Industrial and Materials Science at the Chalmers University of Technology. The research group has been 

active in the field of modelling comminution and classification equipment and processes for over three 

decades. The research output presented in this thesis has been performed in close collaboration with 

major aggregates producers in Sweden and utilizes findings from previous research conducted at CRPS 

[10, 17, 21-23].  

2.1 RESEARCH METHODOLOGY 

The research methodology applied is characterized as a combination of two approaches: a problem-

based approach and a system theory approach. The adoption of a problem-based approach towards 

understanding cone crushers was demonstrated by Evertsson [17]. The problem-based approach is 

described as a systematic search for new knowledge by focusing on the problem and iterative method 

development by understanding fundamental principles of operation and characteristics of the problem 

[17]. The general system theory approach is based on the fundamental principle that a complex system 

can be presented as a combination of the various sub-systems and their interactions for a given defined 

boundary [24, 25]. Asbjörnsson [10] combined the problem-based approach with the system theory 

approach for the development of a dynamic simulation system for crushing plants. Svedensten [21] and 

Hulthén [22] proposed that early implementation of the results to the industry is a critical success factor 

as it adds a validation process and checks the applicability for industrial use.  

The modified research methodology used in this thesis is shown in Figure 2 (based on Asbjörnsson [10] 

and Evertsson [17]). The modification is aimed at addressing the multidisciplinary nature of research 

together with the problem-based approach and industrial case studies. The development work relies on 

both simulation studies and industrial implementation studies to increase the maturity of the research 

output.  
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Figure 2. Applied research methodology based on problem-based approach and system theory [10, 17]. 

The research was initiated by the identification of possible knowledge gaps and the industrial relevance 

of optimization applications for crushing plants. This resulted in the formulation of a set of problems 

that were individually studied using literature study, explorative method searches, and knowledge 

exchange with experts. At this stage, multiple problems with clearly defined distinct scopes were 

conceptualized.  

Each of the defined problems was undertaken for the system building and testing phase with an iterative 

mindset. The process began with the identification of suitable methods to solve the problem with a clear 

presentation of the underlying requirements and assumptions. This was followed by iterative modelling 

and verification processes. The modelling of the problem was based on the mathematical foundation 

while verification was based on a check of the correctness of the implementation. This phase mainly 

relied on the simulation studies and the results were evaluated based on the suitable testing criteria. The 

iterative nature of the process led to gaining new insights about the system in consideration and feedback 

to the concept building phase to revise the defined problems. 

As the system development progressed with new insights and gained certain confidence levels, full-

scale industrial implementation cases were formulated. This step required physical experimental design 

and planning followed by execution and data collection activities. The methods applied were evaluated 

with validation against the industrial data, which led to an increased maturity in comparison with the 

simulation studies. As the process was further iterated, system integration was performed to build the 

solution for the initial defined problems.  
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2.2 RESEARCH EVALUATION 

The research activities performed in this thesis involve the use of both computer simulation and physical 

experimentation. This requires the research quality to be evaluated using central concepts: verification, 

validation, and reliability. Sargent [26] defined model verification as the process of ensuring that 

computer code captures the solution model with the correct implementation process, while model 

validation is a process of evaluating the accuracy of the model to its intended use. Bryman and Bell [27] 

defined research validity as the integrity of the research conclusion and reliability as the repeatability of 

the results. The specific claims made for a study are characterized as internal validity, while the generic 

claims made are characterized as external validity [27]. According to Pedersen et al. [28], the research 

validity is categorized as structural validity and performance validity for both theoretical and empirical 

research. Structural validity represents a qualitative process to evaluate if the system is built with 

sufficient information to demonstrate the application of the results, while performance validity 

represents a quantitative process to determine the accuracy of the results [28]. The multidisciplinary 

nature of this research poses a challenge to include both qualitative and quantitative evaluation of the 

research work [29]. For individual experimental studies, reliability is defined as the extent to which 

experimental outputs are consistent on repeated trials and thus provide confidence in the measuring 

procedure [30]. In comparative simulation studies, it is recommended to use the same underlying 

assumptions for a particular simulation model under study to increase the reliability of the results. These 

different aspects of the verification, validation, and reliability of the individual research activities will 

be discussed in Chapter 5 – Discussion & Conclusions. 

2.3 OPTIMIZATION FUNDAMENTALS 

The mathematical optimization toolbox for engineering design problems consists of several concepts 

which enable the decision-making process [19]. A general set of concepts associated with the description 

of an optimization application are as follows: 

• System concept and system function 

• Mathematical models and mathematical relationships 

• System variables and system parameters 

• Optimization problem definitions 

• Optimization algorithms 

• Optimization methods 

The following section briefly describes each concept based on the interpretation of multiple pieces of 

literature and is primarily based on Papalambros and Wilde [19] and Arora [31]. This is relevant for 

understanding the optimization application performed in the thesis.  

2.3.1 System Concept and System Function  

A system can be defined as a collection of units representing the mathematical behaviour of a physical 

phenomenon that is intended to perform a specific set of system functions by taking a set of inputs and 

producing a set of outputs [19]. System function can be defined as the value-adding activity of the 

physical phenomenon. Figure 3 represents a general representation of a system concept, and it is implicit 

that the system is triggered by the input values and the output is governed by the dynamic behaviour of 

the mathematical functions. Each instance of the output of the system function y(x,p) is distinguished 

for a set of inputs (x,p) and is called a state of the system. The system can produce outputs that can be 
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discrete or continuous depending on mathematical functions. 

 

Figure 3. System concept for optimization application. 

2.3.2 Mathematical Model and Mathematical Relationship 

A mathematical model is an approximate representation of complex physical reality under a set of 

assumptions [19]. Mathematical models exist in multiple degrees of fidelity depending on the intended 

use of the model and the level of quality can vary [32]. The types of mathematical models can be 

characterized as empirical models (developed based on experimental data), mechanistic models 

(developed based on the physics of the problem), phenomenological models (developed based on 

experimental data and physical phenomena) and so on. In essence, a mathematical model is a 

mathematical function describing physical system functions. Mathematical relationships are a set of 

equations that combine the input values of the system with the mathematical models to create a set of 

the outputs of interest. Mathematical models are developed based on the study of the system while the 

mathematical relationships are created based on the intended use of the mathematical models.  

2.3.3 System Variables and System Parameters 

System variables (x) represent the vector of input to the system function, which can be altered in the 

mathematical model to create multiple system states. The system parameters (p) are the vector of input 

to the system that are set to specific values for a particular mathematical model. The state of the system 

is dependent on the combination of system variables and system parameters. The limits on the system 

variables and system parameters are based on the knowledge of the development of the mathematical 

model in relation to the application.  

2.3.4 Optimization Problem Definition 

The standard optimization problem formulation in negative null form is defined in Equation 2.1, where 

the objective is to minimize a function f(x,p) for a given vector of inequality constraint g(x,p) and 

equality constraint h(x,p) [19]. The system variables vector (x) is bounded by set constraints (χ) which 

belong to the real number (
n
) for n dimensions. Mathematical relationships are used to define various 

functions in the optimization problem definition. 

min ( , )

subject to

( , ) 0 

( , ) 0

n

f



=



 

x
x p

h x p

g x p

x

     (2.1) 

 

System Function(s)

x,p Mathematical Models and 

Mathematical  Relationships

Input Output

System Variables

System Parameters

y(x,p)
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The following describes fundamental definitions related to the optimization problem: 

- Objective Function: An objective function f(x,p) is a representation of the goal of the optimization 

problem. The objective function is either described as minimization form or maximization form. In 

practical problems, the objective function is defined based on the stakeholder’s needs.  

- Constraint Functions: A constraint provides a set of requirements that the optimization solution set 

needs to fulfil. The constraints are of two types: equality constraints h(x,p) and inequality constraints 

g(x,p). The problem formulation shown in Equation 2.1 can also be termed a constrained optimization 

problem. Excluding the constraints and variable limits can turn the problem into an unconstrained 

optimization problem. 

- Optimizer (x*): A converged optimization solution consists of a set of optimal solution points for the 

variables and is called the optimizer. 

- Optimum (f *(x,p)): The value of the objective function at the optimal solution points is called the 

optimum. 

The optimization solution needs to be analysed to find the feasibility and boundedness of the solution 

point. The term feasibility means the solution set is meeting the requirements (constraints) defined in 

the optimization problem, while the term boundedness means the optimizer set is within the defined 

limits of upper and lower bounds of the defined variable for a well-posed problem. The solution set also 

needs to be reviewed to determine whether it is a local optimization or a global optimization result.  

2.3.5 Optimization Algorithm 

The optimization algorithm presents a numerical or logical scheme for solving an optimization problem. 

It represents a set of processes carried out to find the optimal solution for the optimization problem. 

These can be broadly classified as a gradient-based algorithm (e.g., interior-point method, sequential 

quadratic programming, etc.) or a non-gradient-based algorithm (e.g., genetic algorithm, particle swarm, 

pattern search, etc.) [19, 31]. There are other multitude variants of the optimization algorithms which 

can be referenced under other categories of optimization algorithms [31, 33, 34].  

2.3.5.1 Gradient-Based Algorithm 

Gradient-based algorithms are based on the fundamental mathematical application of derivatives or 

partial derivatives of a function f(x) at a system variable’s (x) point. Table 2 presents an overview of the 

necessary and sufficient conditions for optimality for single and multivariable optimization problem 

functions [19, 31]. In most practical applications, the optimization formulation is defined as a 

multivariable problem, and it is essential to understand the behaviour of the objective function (linear 

or non-linear).  

In a practical implementation of mathematical models using simulation software, the functions are 

differentiated using a numerical approach considering non-linear behaviour. For example, forward 

difference, backward difference, and central difference methods can be applied to calculate the 

derivative of a function at a point. Taylor series expansion can be applied to estimate a value of a 

function at an incremental point ( x x+ ) with a known value of function f(x) at a point x, as shown in 

Equation 2.2. [31]  

2 3

( ) ( ) ( ) ( ) ( ) ...
2! 3!

x x
f x x f x xf x f x f x

 
  +  = +  + + +   (2.2) 
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Table 2. Overview of the optimality condition for the application of gradient-based algorithms. 

 Single Variable Multi Variables 

First-

Order 

Necessary 

Condition 

For ( ) Differentiable Function

If Gradient: ( ) ( ) 0

then

Local minimum, 

Local maximum or Saddle point

f x

df
f x x

dx

x





→

 = =

→

 

1 2

For ( ) Differentiable Function

If Gradient: ( ) , , , 0

then

Local minima, Local maxima or Saddle points

where vector size of 

n

f

f f f
f

x x x

n





→

   
 = 

   

→

=

x

x

x

x

 

Second-

Order 

Sufficient 

Condition 2

2

For ( ) Differentiable Function 

If ( ) ( ) 0 and 

( ) ( ) 0

then

Local minimum 

f x

df
f x x

dx

d f
f x x

dx

x







→

 = =

 = 

→

 

1 2

2 2

2
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2 2

2

1

For ( ) Differentiable Function

If Gradient: ( ) , , , 0 and

Hessian: ( )

( ) is positive definite

then

Local minima

where 

n

n

n n

f

f f f
f

x x x

f f

x xx

f f

x x x

n





→

   
 = 

   

  
 

 
 
 
  

   

→

=

x

x

H x

H x

x

vector size of x

 

 

The forward difference and backward difference formulas can further be derived from Equation 2.2, as 

shown in Equations 2.3 and 2.4, respectively, where ( )x  represents that the formula is first-order 

accurate [31].  

( ) ( )
( ) ( )

f x x f x
f x x

x

+  −
 = + 


    (2.3) 

( ) ( )
( ) ( )

f x f x x
f x x

x

− − 
 = + 


    (2.4) 

Combining Equations 2.3 and 2.4 results in the central difference formula, as shown in Equation 2.5 

[31]. 

2( ) ( )
( ) ( )

f x x f x x
f x x

x

+  − − 
 = + 


   (2.5) 

Similarly, the second-order derivative can be estimated using Equation 2.6 [31].  

2

( ) 2 ( ) ( )
( )

f x x f x f x x
f x

x

+  − + − 
 =


   (2.6) 

The equivalent of the Taylor series (Equation 2.2) can be applied for multivariable (x) problems of size 

n to perform linear and quadratic approximation, as shown in Equation 2.7 [31]. 

1
( ) ( ) ( ) ( )

2

T Tf f f+  = +  +   +x x x x x x H x x    (2.7) 
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Newton and Quasi-Newton Methods 

The Newton method is the simplest gradient-based iterative algorithm based on the linear approximation 

of the function using first-order Taylor series expansion. It can be used to solve unconstrained 

optimization problems with convex functions where the solution is iteratively updated based on the 

initial point of variables (x0).[19] 

0

Newton Method

Assumption: Function is differentiable and Hessian can be defined

Objective function ( , ), inital variable value ( )

Optimum ( , ) and optimizer ( )

Initiate

0 : A

f

f  

−

−

Algorithm : 

Input x p x

Output x p x

0

1

1

ssume inital feasible point  at ( )

1: Define and calculate Gradient ( ) and Hessian ( )

2 : Calculate new variable value: [ ( )] ( )

Convergence critieria reached

k

T

k k

k k k k

k

f

f−

+

=



= − 

→

x x

Repeat

x H x

x x H x x

Until

 

For many practical problems, the calculation of the second derivative to determine the Hessian is limited. 

The quasi-Newton method provides an updated version of the Newton method wherein the calculation 

of the Hessian is iteratively estimated and updated. The estimation of the Hessian can be performed 

using the DFP formula (Davidon-Fletcher-Powell) or the BFGS formula (Broyden-Fletcher-Goldfarb-

Shanno). [19] 

0 0

Quasi-Newton Method

Assumption: Function is differentiable and Hessian can be estimated

Objective function ( , ), inital variable value ( ), and inital Hessian value ( )

Optim

f−

−

Algorithm : 

Input x p x H x

Output

0 0

1

1

um ( , ) and optimizer ( )

Initiate

0 : Assume inital feasible point  at ( ) and Hessian ( ) ( )

1: Define and calculate Gradient ( )

2 : Calculate new variable value: [ ( )]

k k k k

T

k

k k k

f

k

f

 

−

+

= =



= −

x p x

x x H x H x

Repeat

x

x x H x

1

( )

3: Compute new  and update =

Convergence critieria reached

k

k k

f

 

+



+

→

k k

x

H(x ) H H H(x )

Until

 

Sequential Quadratic Programming 

Sequential quadratic programming (SQP) is suitable for solving constrained optimization problems and 

is a popular non-linear programming (NLP) algorithm. To understand SQP, two important concepts 

need to be explained: Lagrange multiplier and Karush-Kuhn-Tucker (KKT) conditions. For a 

constrained optimization problem as shown in Equation 2.1, a Lagrange function can be defined, as in 

Equation 2.8, where λ and μ are Lagrange multipliers associated with equality and inequality constraints. 

The KKT condition for finding the local minimizer for the stated problem in Equation 2.8 is shown in 

Table 3. The solved value of Lagrange multipliers indicates if the constraint is active or inactive in each 

problem [19]. 
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min ( , ) ( , ) ( , ) ( , )T TL f= + +
x,λ,μ

x,λ,μ p x p λ h x p μ g x p    (2.8) 

Table 3. Overview of the optimality condition for the application of gradient-based algorithms for constrained 

optimization problem formulation [19]. 

 Karush-Kuhn-Tucker (KKT) Conditions 

First-Order Necessary Condition For min ( , ) ( , ) ( , ) ( , )

If

( , ) 0, ( , ) 0,

( , ) ( , ) ( , ) 0 , where

0, 0, 0

then

 point

T T

T T T

T

L f

f

KKT

 

  



= + +

= 

 +  +  =

  =

→

x,λ,μ
x,λ,μ p x p λ h x p μ g x p

h x p g x p

x p λ h x p μ g x p

λ μ μ g

x

 

Second-Order Sufficient Condition For min ( , ) ( , ) ( , ) ( , )

 point

If

( ( , )) is positve definite

x ( ( , )) x 0  x 0

then

Local minima

T T

T

L f

KKT

L

L









= + +

→

     

→

x,λ,μ
x,λ,μ p x p λ h x p μ g x p

x

H x ,λ,μ p

H x ,λ,μ p

x

 

 

0 0

Sequential Quadratic Programming

Objective function ( , ), equality constraint , ) and inequality constraint ( , ),

inital variable value ( ), and inital Langrange multiplier ( ,

f−

Algorithm : 

Input x p h(x p g x p

x λ 0
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0 : Assume inital feasible point at ( ) and Langrange multiplier ( , )

1: olve quadratic sub-problem to determine search direction (

k k k

f

S

 −

= = =

μ

Output x p x

x x λ λ μ μ

Repeat

s 1 1

2

1

),  , 

1
min ( ) ( , ) ( , ) ( , ) ,

2

where ( , ) ( , ) ( , ) ( , )

Subject to

( , ) ( , ) 0

( , ) ( , ) 0

2 : Update new 

Co

k k k

T T

k k k k k xx k k k k

T T

k k k k k k

T

k k k

T

k k k
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q f f L

L f

+ +

+

= + + 
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+ 
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kS
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x ,λ ,μ p x p λ h x p μ g x p
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Interior-Point Method 

The interior-point method is suitable for constrained optimization problems with a large number of 

constraints and the algorithm moves inside the feasible region to reach the optimal solution [31]. The 

problem is initiated by adding a Barrier function to the formulation. A Barrier function is typically a 

logarithmic function added to the inequality constraint to penalize the objective function [19]. The 

estimates of the Lagrange multipliers in the formulation show the activity of the constraints.   

0

Interior-Point Method using Barrier Function

Objective function ( , ), inequality constraint ( , ),inital variable value ( )

Optimum ( , ) and optimizer ( )

Initiate

0 : Penali

f

f  

−

−

Algorithm : 

Input x p g x p x

Output x p x

 

1

0

zing objective function : ( , ) ( ) ln( ( ))

Assume inital feasible point at ( ) 

1: Find interior point  and 

select monotonically decreasing sequence: 0 when  , Set 0

2: Solve 

m

j

k

k

k

T r f r g

r k k

=

= − −

=

→ → =

x x x

x x

Repeat

x

1

*

1

min ( , ) ( ) ln( ( )) using unconstrained method with  as starting point

3: Update new ( )

Convergence critieria reached

m

k k

j

k k

T r f r g

r

=

+

= − −

=

→

x x x x

x x

Until

 

2.3.5.2 Non-Gradient-Based Algorithm 

Non-gradient-based algorithms are a class of algorithms that overcomes the limitations of gradient-

based algorithms, such as the need for continuous and differentiable function and handling of discrete 

variables. Examples of non-gradient-based algorithms include genetic algorithms (GAs), particle swarm 

optimization (PSO), ant colony optimization (ACO), etc. These algorithms are also termed heuristic 

optimization methods as there are no assumptions made on the mathematical form of the function, they 

require expensive computation, and they have no convergence proofs. [19, 31] 

Genetic Algorithm 

Genetic algorithms (GAs) were developed based on inspiration from the natural evolution process and 

are suitable for an objective function that is non-linear and stochastic in behaviour [35]. A classic GA is 

based on a series of steps as shown in Figure 4 [19]. The algorithm is initiated with an initial set of 

design variable points for the given design space and is encoded as a chromosome, which is defined as 

the initial population. Fitness values are calculated which represent the objective function values at the 

given population. Based on the evaluation of the fitness values, a certain set of design variable points 

are selected as a parent. The high-performing part of the population represented by fitness values are 

given a higher chance to reproduce and the best-performing design points are directly transferred to the 

next-generation population as elite individuals. Crossover is defined as a possibility to define a new set 

of design variables through a combination of design points selected in the parent set, and mutation is 

defined as the alternation that generates slightly new design points. The crossover and mutation steps 

create a new population of design points for the next-generation population. The process is repeated 

until the termination criteria is reached [19]. 
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Figure 4. Generic flow description of genetic algorithm [19]. 

2.3.6 Optimization Methods 

An optimization method is a process of implementing multiple optimization problems present in a 

complex system. To solve the optimization problems, two optimization methods have been applied in 

this thesis, namely, multi-disciplinary optimization (MDO) architecture and multi-objective 

optimization (MOO). The optimization methods follow a set of notations for defining the optimization 

problem in the form of MDO architecture and MOO, which is shown in Table 4 [36].  

Table 4. Notation for defining an optimization problem. 

Symbol Definition 

x Vector of design variables 

y Vector of coupling variables or output from sub-process analysis 

f Objective function 

c Vector of design constraints 

cc Vector of consistency constraints 

N Number of sub-processes 

  (  )0 Functions or variables shared between more than one sub-process 

  (  )i Functions or variables applied only to a sub-process i 

 (   ̅) Independent copies of variables distributed to other sub-process 

  (  )0 Functions or variables at their initial values 

  (  )* Functions or variables at their optimal values 

2.3.6.1 Multi-Disciplinary Optimization (MDO) Architecture 

The MDO architecture is a representation of organizing, coordinating and solving a set of optimization 

problems defined for a cross-disciplinary problem [36]. Two simple MDO architectures have been used 

in this study: multi-discipline feasible (MDF) and individual-discipline feasible (IDF). The optimization 

problem formulation and the algorithms of the two architectures are shown in Figures 5 and 6, which 

are based on the work of Martins and Lambe [36]. 

Multi-Discipline Feasible (MDF) 

The MDF architecture presented in Figure 5 is monolithic in nature as it contains a single level of the 

optimization problem. The optimization problem is solved by sequentially evaluating each sub-process 

involved in the system. The objective function consists of two sets of functions, i.e., function (fo), which 

is shared between the sub-processes, and function (fi), which represents individual sub-process i. 

Similarly, the problem definition contains two sets of constraints, i.e., constraint (co), which is shared 

between the sub-processes, and constraint (ci), which represents individual sub-process i. 

CrossoverMutation
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Fitness Calculation

TerminationChromosome
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Figure 5. Optimization problem formulation and algorithm for the monolithic MDF architecture. 

Individual-Discipline Feasible (IDF) 

The IDF architecture, presented in Figure 6, is a distributed architecture that contains two levels of 

optimization problems. The system optimization problem is iteratively solved by concurrently solving 

the individual sub-process optimization problem in parallel. The system optimization problem contains 

an objective function (fo) and constraint (co), which are shared between sub-processes, and an additional 

consistency constraint (cc) is introduced to maintain the consistencies of the design variables. Each sub-

process optimization problem consists of the objective function (fi) and constraint (ci) belonging to sub-

process i. The individual sub-process optimization receives independent copies of the design variables 

( 𝐱 ) belonging to the other sub-process through the system optimizer. The sub-process optimizer 

delivers a local optimal value for the design variable (xi
*) and function value (fi

*) to the system optimizer. 

 

Figure 6. Optimization problem formulation and algorithm for the distributed IDF architecture. 
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2.3.6.2 Multi-Objective Optimization (MOO) 

The MOO method represents a synchronized optimization of multiple objective functions involved in 

each problem. The central concept for using MOO is to generate trade-off curves (Pareto optimality) 

between various objective functions. The MOO problem can be solved using various approaches, such 

as the weighted-sum approach or constraint-based approach, and use of a heuristic algorithm, for 

example, a genetic algorithm [37]. A generic example for k objective function optimization problem 

formulation for a weighted-sum approach as compared with a constrained-based approach is given in 

Table 5. In the weighted-sum approach, the weight factor is changed to generate the Pareto front, while 

in the constraint-based approach, the problem is converted to single-objective optimization and other 

objective functions are parametrically varied with a target value of ε [31, 37].  

Table 5. Comparison of weighted-sum approach and constrained-based approach for Pareto optimality. 

Weighted-Sum Approach  Constrained-Based Approach 
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MOO Using Genetic Algorithm 

A general form for defining a MOO problem using a GA is shown in Figure 7 [35, 38]. The system 

optimizer parses the design variables (x) to the process simulation. The simulation returns the output 

variable (y) to the system optimizer, and this process is repeated until the convergence criteria are 

achieved. The optimization problem contains multiple objective functions (f1, f2), also referred to as 

fitness functions, and a set of constraints (c). The choice of objective functions and problem formulations 

is critical in generating the relevant results using this approach. 

 

Figure 7. Optimization problem formulation and algorithm for the MOO problem using genetic algorithm. 
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3 LITERATURE REVIEW 

This chapter aims to: 

 Introduce process and equipment modelling for crushing plants. 

 Describe recent research in process simulation, production data and optimization for 

crushing plants. 

 Identify needs and gaps within the application of optimization methods for crushing 

plants. 

 

The essential function of a crushing plant in aggregates production is the breakage of rock (coarse 

comminution process) and separation of its fragments (classification process) based on size and shape 

[39]. A crushing plant in minerals processing has the same functionality and is integrated with fine 

comminution and classification processes such as milling, high-pressure grinding roller, hydrocyclone 

separation, and so on [2, 39]. Extensive research has been conducted over the past 50 years, particularly 

in the field of numerical simulation, to investigate and find ways to develop and operate crushing plants 

in both the minerals processing and aggregates processing industries [9, 39]. These simulation methods 

and models were developed to address the industrial needs to understand, diagnose, and capture 

performance aspects of equipment and processes [9, 39], and more importantly, the needs of users such 

as engineers and developers for their utilization [40]. The journey of fundamental understanding 

comminution (theories of comminution) [41-43], classification [44, 45], process modelling and 

experimental studies [9, 10, 39] has had a tangible impact on the industry, with multiple commercial 

software applications in use and considerable progress in the research community [46]. The drive 

towards increasing the industrial utility of different developed models and methods still exists, with 

requirements from the industry for controlling energy and product yield. The simulation methods can 

simulate scenarios for achieving the reduction of energy usage and control of the process yield, but a 

gap remains between simulations and actual utilization of the simulation tools for daily operation to 

solve industrial needs. This further adds new challenges in utilizing and integrating different 

technological advancements to address the industrial needs.  

3.1 PROCESS SIMULATION OF CRUSHING PLANTS 

Numerous studies have research has been conducted over the past decades on numerical simulation of 

crushing plants [9, 40, 45, 47]. The process simulation for crushing plants is classified as either steady-

state or dynamic simulation. The steady-state process simulation is based on the instantaneous mass 

balance of the process in all nodes, see Equation 3.1, where m is mass flow rate, and i and j are the 

number of material streams at input and output of a node [9]. In a circuit application, the mass balancing 

is applied to multiple nodes and iterated until a convergence criterion is achieved and the output contains 

one set of mass flow rates at different nodes of the circuit. 

, ,

1, 1, 2,E.g. One input and two outputs in a splitter: 

i in j out

i j

in out out

m m

m m m

=

= +

 
  (3.1) 
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The application of steady-state process simulations for plant design, optimization and comparison of 

different circuit configurations has been shown [48-50]. King [51] presented an extensive and systematic 

demonstration of the use of a steady-state simulation tool to improve the production of fine materials in 

a comminution circuit of a uranium plant. Asbjörnsson [10] demonstrated that the steady-state process 

simulations for crushing plants are limited to predicting different operational scenarios such as changes 

in the process over time and non-ideal operating conditions.  

The initial work for the dynamic process modelling for crushing plants was carried out by Whiten [52], 

who introduced the idea of transition from the steady-state to the dynamic-state model to include the 

effect of material delays during physical processing. Liu and Spencer [53] showed the application of the 

PID (proportional-integral-derivative) controller in the grinding circuit, and Sbárbaro and del Villar [54] 

demonstrated the application of a model-based control system to further propel the development of 

dynamic simulation in crushing plants. Asbjörnsson [10] presented the capability of the dynamic 

simulation to capture discrete and gradual changes happening in the crushing plant due to delays, start-

ups, discrete events, wear, etc. In the dynamic process simulation developed by Asbjörnsson [10], each 

equipment model includes the derivative for mass m and properties γ of the material to time as given in 

Equations 3.2 and 3.3, respectively, where n represents different material characterization properties, 

e.g., product size distribution, material strength, density, shape, etc. The blending of the material is 

represented by a perfect mix model.  

, ,

( )
( ( ) ( ))i in j out

dm t
m t m t

dt
= −     (3.2) 

1

,

,

( )
( )( )

( ( ) ( )),  where ( )
( )

( )

i in

i in

n

t
m td t

t t t
dt m t

t





 
 

= − =
 
  

γ
γ γ γ    (3.3) 

The dynamic process simulation has been applied to study the different implementations of the control 

system, such as model predictive control [55], robustness study [56], production improvement [20] and 

operator industrial training [57]. Due to the advantage of traceability of material in the circuit, dynamic 

simulation is useful for industrial applications such as debottlenecking in crushing circuits [10], 

equipment sizing [40], and disturbance analysis [10, 40, 56].  

3.2 EQUIPMENT MODELLING IN CRUSHING PLANTS 

Equipment modelling in a crushing plant is usually aimed at describing, explaining, and mathematically 

presenting relationships between elements of the rock breakage process (cone crusher, jaw crusher, etc.) 

and between elements of the rock separation process (vibratory screen, hydrocyclone, etc). Napier-Munn 

and Lynch [40] presented a classification of the modelling for crushers and screens based on three 

fundamental bases:  

• Mechanistic models based on the physics of the equipment. 

• Phenomenological models based on an intellectual construct describing the phenomenon. 

• Empirical models based on mathematical convenience. 

The population balance model, introduced by Epstein [58], is a commonly used phenomenological 

model to represent particle size reduction in comminution equipment [9], for example, cone crushers 

[45], high-pressure grinding rolls [59], grinding mills [60], etc. It is characterized as a probability-based 

model and is dependent on a large empirical dataset generated by testing different materials [9, 10]. 

Evertsson [17] presented a mechanistic model for cone crushers relying on the geometry of the crusher 
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chamber and the sequence of operations of the crushing process within the equipment which can offer 

higher predictability of actual conditions [61]. The screening process, using equipment such as 

mechanical vibratory screens, can be modelled using efficiency curves based on a probabilistic function 

[44], an exponential sum expression [45], or a polynomial function [62]. Other models for vibratory 

screens include an analytical model [63, 64] which provides higher fidelity in the simulations. 

Equipment such as bins and stockpiles have been modelled using a perfect-mix principle, a first-in-first-

out (FIFO) principle and a mechanistic-model principle [65]. Conveyors in the process usually act as a 

material delay unit and are modelled as a state-space model [66]. 

3.3 OPERATION, CONTROL AND OPTIMIZATION OF CRUSHING PLANTS 

The operation of an industrial-scale crushing plant is complex and performance depends on multiple 

aspects ranging from raw material and individual equipment to the management of the operation. 

Asbjörnsson [10] presented a system-wide overview on the complexity of the development of process 

simulation for crushing plants and showcased several factors that can influence plant performance (see 

Figure 8). The process operation includes changes and variations due to both controllable factors such 

as the setting of machine parameters for single equipment and uncontrollable factors such as wear and 

segregation during operation [10, 67, 68].  

 

Figure 8. Factors influencing plant performance for a crushing plant [10]. 

The physical operation of a crushing plant is built of multiple layers in the control system application 

together with the manual operation to manage regular operations and the changes due to variability in 

material feed, wear in crushers and screens, etc. [10, 22, 69]. Equipment involved in a crushing plant 

layout needs to be coordinated and controlled during the operation to produce products. To manage 

differences, various types of control systems are in place to steadily operate the crushing plant. These 

include simple controls such as electrical switches (on/off), and interlocks to advance process control 

such as model predictive control [10, 22]. For individual equipment, the control systems are installed to 

maintain and regulate operation based on the equipment purpose and safety requirements, while for a 

process, the control systems can be installed to stabilize or regulate the process operation [10, 22, 70, 

71]. The supervisory controller is usually applied to achieve process optimization based on the target 

for real-time plant performance [72], for example, model predictive control [55] and real-time 

optimization using a finite state machine (FSM) algorithm [73]. These advanced applications of the 
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control systems are still limited in daily industrial practices and operation requires multiple manual 

interventions [46].  

Given existing plant operations with limited utilization of control systems, improvements in crushing 

plants are still carried out through an iterative process and manual decisions by operators and plant 

managers. The manual decisions by personnel can potentially be supported by an optimization tool. 

Research within the area of minerals processing circuits has identified the use of numerous different 

objective functions for optimization, which was driven by the need for technical and economic 

measurements of the processes [74-76]. Such performance indicators are used to demonstrate the 

optimization applications by the range of research applications, for example, production and operation 

costs [77-79], profit and quality [80], material throughput rate [61, 73, 81], technical parameters [82], 

yield and energy [83], net present value [84], yield and cost [85], grade engineering [86, 87], crusher 

geometrical design [88, 89], etc. The scope of the optimization objective function has been varied 

depending on the application and there is no clear consensus on how these process objectives are 

classified and how are they useful for operational change decisions for operators or plant managers.  

The methods used for optimization problem solutions are largely based on stochastic and heuristic 

optimization algorithms such as genetic algorithms and genetic evolutionary algorithms [79, 82-84, 87, 

89, 90], while limited gradient-based algorithms are applied in minerals processing circuits. [75, 76]. 

The common reasoning for the choice of such algorithms is that the optimization problem is described 

as complex and non-linear. Other optimization algorithms used are mixed-integer linear programming 

(MILP) [91] and probabilistic global search Lausanne (PGSL) [78]. The factors contributing to the 

choice of method and algorithm are based on ease of application, computation cost and model behaviour 

(linear or non-linear). The selection of the method and algorithm can be questioned if the choice is due 

to a lack of understanding of the optimization problem or the objective functions used are complex or 

there is a vast amount of information to handle. A common denominator from the above-stated 

optimization research papers is lack of repeatability, as most optimization problems posed are not 

presented in a standardized form (e.g., negative null form) as generally represented in mathematical 

optimization. Additional perspectives from the operation management research are seen in studies of 

specific indicators that have been applied to minerals processing circuit improvements such as overall 

equipment effectiveness, availability, performance, and effectiveness [92-94]. The ISO 22400 standard 

states a set of key performance indicators for managing manufacturing operations [95-98], although it 

has not been utilized to its full potential for continuous production processes such as in crushing plants.  

3.4 MODERN TRENDS IN INDUSTRY 

Real-time measurement of production data is a common practice in many production industries, driving 

the need for digital solutions to capture, filter, structure, and store data, followed by performing analytics 

and knowledge generation [16, 99]. According to Kusiak [16], a smart manufacturing system is defined 

by autonomy, evolution, simulation and optimization of production, which is reflected by the degree of 

the physical process being captured in cyberspace. Grieves and Vickers [100] defined a digital twin as 

a virtual system that can assist engineers in the design, testing, manufacturing, and use of a product for 

the discrete production industry. Modern manufacturing industries are developing solutions towards 

integrated decision-making capabilities where the application of digital twins can be found for product 

and production development of discrete production [101-103], yet the application of these findings to 

the minerals processing industry (characterized by continuous production) remains limited in application 

[104]. Recent trends in minerals processing industry development are automation and control [71, 105, 

106], machine learning [107-109], and big data management [99], and these are propelling a drive 

towards new technological developments. An important aspect that is gaining traction is sustainability 
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indicators [110], such as requirements for environmental product declarations in the aggregates industry 

[111, 112].  

Complex and large optimization problems exist in the development of other mechanical products in, for 

example, the aerospace and automotive industries, especially concerning the interaction of two or more 

disciplines such as structures and aerodynamics [19, 36, 113, 114]. To address and manage these 

complex interactions and their optimization, multi-disciplinary optimization (MDO) architectures have 

been used to attain global optimization and exploit the power of parallel computing [115]. Martins and 

Lambe [36] reviewed multiple MDO architectures applied in various engineering applications and 

showed that MDO methods are suitable to handle large complex optimization problems in engineering 

systems. The MDO architecture is a representation of how various sub-disciplines involved in an 

engineering system optimization problem are organized and how their strategies are set up to achieve 

optimal values for design variables of the engineering system [19, 36]. Similarly, complex dependencies 

exist between various processing units of crushing plants which require new ways of understanding and 

computing optimization. There are opportunities to use MDO for minerals processing simulations and 

integration of multiple systems to create useful decision-making tools. 
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4 RESULTS 

This chapter aims to: 

 Present a system-wide overview of optimization capabilities. 

 Describe the requirements in the development of the optimization capabilities for 

crushing plants.  

 Demonstrate the application of performance indicators. 

 Demonstrate the application of optimization methods for process optimization, model 

calibration and data reliability. 

 

The iterative development in this thesis resulted in the exploration and application of multiple 

optimization approaches which are suitable for crushing plant optimization. A multi-layered modular 

framework for the development of the optimization capabilities in a crushing plant together with the 

individual studies performed at various abstraction levels is presented in this chapter [Papers A-F].  

4.1 MODULAR FRAMEWORK FOR OPTIMIZATION CAPABILITIES DEVELOPMENT 

A multi-layered modular framework for performing optimization functions for industrial use is 

presented in Figure 9. The framework consists of two systems – a physical system and a simulation 

system – both with four sub-levels interacting parallelly. The interaction between the physical system 

and simulation system (digital twin) describes different abstraction levels and use in the equipment and 

process performance mapping. 

 

Figure 9. A modular framework for the implementation of optimization capabilities for crushing plants. 

The optimization function is hierarchically built over the digital twin of the crushing plant pertaining to 

the process operation. The desired optimization of the physical system is achieved by translating, 
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modelling, and simulating the physical process, which is then followed by the optimization routine. The 

results from the simulation system are transferred to the physical system for implementation. The 

continuous integration of the data into simulation for performance improvement and optimization is a 

necessary condition for creating a powerful decision-making tool. 

4.1.1 Physical System 

The physical system in this framework represents the physical process operation of a crushing plant. 

The base level (P1: Process and Equipment Operation) represents multiple interconnected primary 

pieces of equipment (crusher, screens, conveyors, bins, etc.) and supporting auxiliary equipment (wheel 

loader, pumps, etc) in an operation. It is assumed that the process performance is mainly affected by the 

control of the primary set of equipment, although there are effects from the auxiliary equipment. 

Individual equipment operation is based on their physical and mechanical principles. Process operation 

is dynamic and includes the effects of the interconnected equipment, control systems, and material flow.  

The second level (P2: Data Collection System) consists of multiple data-acquisition methods for 

capturing both offline and online production data. The online data represent continuous data captured 

by various sensors present in the process operation, such as mass flow, power draw, pressure, speed, 

temperature and so on, belonging to either individual equipment or the process. The data also include 

measurement or estimation of machinery settings (soft sensor) of individual equipment, for example, 

cone crusher main shaft position (closed-side setting estimate), material level in the hopper, etc. The 

offline data represents the data that is determined discretely in the laboratory by collecting samples of 

material from the process operation such as material strength, product size distribution, flakiness index, 

etc. The offline data also includes equipment settings that are measured or noted based on the physical 

operation of the process, for example, crusher’s eccentric throw, screen aperture, various geometric 

dimensions of the equipment, etc.  

The third level (P3: Key Performance Indicator (KPI) Calculation) includes the calculation of process 

production performance using the data collected during plant operation. This indicator presents how 

well the operation is carried out within individual equipment or the process. The KPIs can be analysed 

continuously as trends (seconds, minutes, hours) or discrete time steps (days, weeks, months, years) 

depending on the application need. The KPIs are useful for implementing incremental improvements in 

production by performing root-cause analysis or for benchmarking similar crushing processes for 

continuous improvements and capturing the best practices of operation.  

The fourth level (P4: Optimization and Improvement) in a physical system context means control of the 

production performance towards the desired needs. The control of production with respect to aggregates 

production entails controlling the production rate, production volume, energy impact, product quality, 

etc. of different aggregates products based on the market or industrial needs. The iterative learning from 

the previous step and practices can bring about improvements in production performance. A simulation 

system can assist in making decisions aimed at distinctly steering production performance towards the 

desired target. The improvements and changes are indicated by the change in KPIs, which are calculated 

based on the data collected from the physical plant. The utilization of the four steps in the physical 

system can lead to performance control of the crushing plant.  

4.1.2 Simulation System 

The simulation system represents a parallel digital replica of the physical crushing plant process. The 

purpose of the simulation system is to understand, predict, explore, and modify the physical system. The 

base level (S1: Process and Equipment Model) consists of mathematical modelling of physical 
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equipment and processes. The individual equipment model is fundamentally developed based on 

mechanistic, phenomenological, probabilistic, or data-driven principles. The fidelity of the equipment 

model is dependent on multiple criteria such as the underlying assumptions, degree of data supplied, 

experimental procedures, validity and so on. The equipment models are combined to produce a process 

simulation for a crushing plant. The process simulation is broadly classified into two categories: steady-

state simulation and dynamic simulation. The advantage of the dynamic simulation is that it provides a 

closer replication of the actual physical operation than the steady-state simulation models, although the 

optimization methods can be run on both types of process simulation models. However, dynamic 

simulation requires more computational power and knowledge than steady-state simulation for its 

configuration and operation. 

The second level (S2: Implementation of Process and Equipment Model) represents the procedures 

involved in configuration, calibration, validation and verification of the process and equipment model. 

The configuration is defined as setting up the simulation model based on the physical crushing plant 

layout and settings. The calibration refers to comparing and modifying the selected process and 

equipment model output to controlled experimental data (online or offline). This is achieved by 

performing an experimental survey and a model error-minimization process using a suitable 

optimization method. The validation step refers to proving that the simulation output is in line with the 

physical output. The numerical value of the errors during the calibration and validation steps represents 

the accuracy of the simulation. The verification step is a process of re-checking the practical 

implementation of the procedure and numerical model used for the simulation. The different data 

required in this step is retrieved from the parallel physical system (P2).  

The third level (S3: Key Performance Indicator (KPI) Calculation) is similarly based on the physical 

system KPI calculation. The simulation system KPIs can be used for process improvement by iteratively 

studying the plant under consideration. The advantage of the simulated KPIs is that a cost-efficient, trial-

and-error new setting combination can be performed. It also provides opportunities for simulating KPIs 

for which there is limited sensor technology present for physical operation given that the output of 

interest is predicted by the underlying process and equipment model.  

For the fourth level (S4: Optimization Function), KPIs are used as objective functions and constraint 

functions depending on the optimization problem definition. The optimization function consists of a set 

of different optimization methods which is used to either generate operational settings or explore the 

trade-off between KPIs of interest for given requirements. The results from the optimization function 

are translated back to the physical system to optimize the production operation for the given need of the 

stakeholder. In essence, the higher level of utilization of the simulation system can lead to increased 

performance control of the physical system.  

4.2 DEVELOPMENT OF OPTIMIZATION FUNCTIONALITY FOR CRUSHING PLANTS 

The optimization function is aimed at exploring non-intuitive solutions for a defined problem towards 

designing, operating, and controlling a crushing plant. Explorative studies were carried out to understand 

and implement optimization methods for crushing plant operational application [Papers A, B and C]. 

Figure 10 presents a summarized process of optimization function implementation for the crushing plant, 

which was developed from a top-down approach to the problem. 
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Figure 10. Overview of optimization function implementation in the simulation system. 

4.2.1 Optimization Scope 

The first task in starting the optimization procedure is to define the scope of the optimization application. 

Based on the literature review in Paper A, a general classification scheme is established to define the 

scope of the optimization (see Table 6) consisting of two dimensions: State of Application Area Units 

and State of Development Stage. 

Table 6. Classification scheme to define the scope of optimization application [Paper A]. 

 State of Development Stage → 

State of Application Area Unit ↓ Design Operations Control 

Equipment  Papers E, F  

Sub-Process  Papers B, E, F  

Main Process  Paper C  

The state of application area units characterizes the abstraction level based on the hierarchical position 

of physical entities in the crushing plant. This is categorized as Equipment, Sub-Process and Main 

Process. The equipment represents an individual physical unit (e.g., crusher, screen, etc.) in the 

processing operation, while the sub-process (e.g., primary, secondary, tertiary crushing, etc.) represents 

a collection of equipment performing a specific functionality for the main process of the physical 

crushing plant. 

The state of development stage represents the purpose of the optimization and is divided into three 
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categories: Design Stage, Operation Stage, and Control Stage. The Design Stage covers the optimization 

application towards developing and designing a completely new process or equipment. This can also 

include the re-configuration of an existing design concept for a process or equipment. The validity of 

the optimization results is dependent on the fidelity of mathematical models used for the process and 

equipment optimization, while the possibility for the validation of the optimization results is limited. 

The Operation Stage deals with the optimization application towards understanding (trade-offs between 

KPIs) and finding operational settings of an existing process or piece of equipment based on the user 

requirements. The validity of the optimization results is dependent on the type of mathematical models 

together with the calibration process applied. The optimization results can be implemented into real-

time operations and the results can be validated by collecting and comparing them with operational data. 

The Control Stage includes the optimization application towards regulatory control and supervisory 

control of the process and equipment under real-time operation. The application is related to stabilizing 

or regulating an existing process or equipment towards maintaining its nominal performance. The 

usefulness of the optimization application can be observed from the real-time plant performance control. 

For Papers B and C, the application of the optimization function was carried out to find suitable 

operating parameters and trade-offs for a fixed crushing plant layout and are categorized under 

Operation Stage. 

The process simulation model can be configured based on the scope and then used as an underlying 

mathematical model for running an optimization function. For both Papers B and C, a dynamic 

simulation model for crushing plants developed by Asbjörnsson [10] was used. In Paper B, the scope of 

the optimization application was to investigate the operating parameters for an existing layout of an 

aggregates production plant (see Figure 11 for circuit layout). The purpose was to find a balance between 

the goal of the individual sub-processes and the overall process goal. In Paper C, the purpose of the 

optimization application was to study the trade-off and balancing point between the two sub-processes 

of a conceptual operation of a crushing plant for minerals processing (see Figure 12 for circuit layout).  

4.2.2 Optimization Definition 

Based on the scope and the purpose of the optimization application, a multitude of optimization 

approaches can be applied. In Paper B, an explorative study was performed to investigate the application 

of two multi-disciplinary optimizations (MDO) architectures, namely, multi-discipline feasible (MDF) 

and individual-discipline feasible (IDF). In Paper C, an additional implementation of the multi-objective 

optimization (MOO) using a genetic algorithm (GA) was carried out to demonstrate the Pareto front for 

the multiple objectives present in the crushing plant.  

 

Figure 11. Crushing plant for aggregates production consisting of two sub-processes [Paper B]. 
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Figure 12. Crushing plant layout for a two-stage coarse comminution plant [Paper C]. 

The different optimization methods applied were based on exploring the functionality of each towards 

the creation of decision-making results. Typically, multi-domain optimization problems exist in a 

crushing plant with a set of conflicting objectives. The interactions and dependencies between sub-

processes (e.g., primary crushing process, secondary crushing process, etc.) are a function of the 

characteristics of material streams in the process, which classifies the multi-domain optimization 

problem as loosely coupled and hierarchical with typical plant layout in most existing operations. For 

example, a change in the operational setting of a tertiary cone crusher can have a limited impact on the 

previous secondary crusher setting, unless there are recirculating material streams, and can have a higher 

impact on the subsequent screen performance. A change in CSS (closed-side setting) in the primary 

crushing process influences the characteristics of the material produced in this process, which in turn 

influences the performance of the subsequent secondary crushing process. In conclusion, the sub-

processes are loosely coupled with input design variables of the other sub-processes (meaning that the 

effect of change of the design variable is limited to the specific piece of the equipment in that sub-

process) but are strongly coupled with the material output of one sub-process to another [Papers B and 

C]. 

Given the understanding of the operational design variable in a crushing plant, standard optimization 

problem definition in negative null form is used to determine the goal (objective functions) and the 

requirements (constraint functions). The objective functions which have been applied for optimization 

are throughput rate [Papers B and C], sub-process value (SPV) [Paper B], and power consumption 

[Paper C]. The SPV function is a simple function representing the technical-economic performance 

based on approximate cost, selling price, and throughput rate of the aggregates product [Paper B].  

Table 7 presents examples of optimization problem formulations applied for a two-stage crushing plant 

in the negative-null form [Paper B]. In MDF formulation, the objective function is the weighted sum 

function to maximize the total throughput of the crushing plant and sum of the SPVs of the individual 

sub-process, where w is the weight factor, Pj is throughput for product j, Vj is the value added in the sub-

process for the product j, and i represents the two sub-processes. The problem is constrained by 

maintaining the reduction ratio (F80/P80) of the crushers in the two sub-processes to a value of 4. The 

optimization problem highlights the design variables (operational settings of the crushers and screen), 

which can change. The design variables are CSS1 and CSS2, which represent the closed-side setting of 

the crushers in the secondary and tertiary crushing processes, respectively, and SA1 represents the top-
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deck screen aperture setting of the secondary crushing process. The optimization formulation also 

presents the upper (xub) and lower (xlb) limits for each design variable. The IDF formulation is a bi-level 

optimization problem formulation, where the objective function of the system optimizer is to maximize 

the total throughput of the crushing plant while the objective function of the individual sub-process is 

to maximize the SPV of each crushing stage. The system optimizer maintains the consistency between 

the duplicate variables by introducing consistency constraints. The consistency constraint is introduced 

in the IDF system optimizer to minimize the norm between the design variables and the duplicate copy 

of the design variables. The details of the plant layout, functions and other descriptions can be found in 

Paper B.  

The optimization problem formulation is dependent on the choice and purpose of the optimization 

method. The optimization problem is decoupled and is represented by a simple objective function in the 

case of the distributed IDF approach [Papers B and C]. The optimization problem formulation for 

monolithic MDF is rather comprehensive in comparison with the IDF problem formulation. The 

optimization problem formulation in a standard format is essential for replication of the results. The IDF 

formulation is particularly modular in design, which means that it is comparatively easier to add more 

sub-processes within a system optimizer than it is in the MDF formulation. Also, unlike the MDF 

formulation, the IDF formulation maintains the discreteness in the objective function and is independent 

of the effect of weight. 

Table 7. Comparison of applied MDF and IDF optimization problem definitions for a two-stage crushing plant 

[Paper B]. 
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Before solving the optimization problem, it can be good to know the dependencies of the design variable 

to the defined objective functions for interpretation of the optimization results. Design variable study is 

a parametric study of the individual design variables (or combination of variables) towards the objective 

function to gain insights into the defined problem and potential improvements. Figure 13 shows an 

example of the design variable studies for the SPV function applied in the crushing plant in Paper B. As 

seen in Figure 13 (a), the OFAT (One-factor-at-a-time) study reveals the monotonic increasing and 

decreasing behaviour of SPV in secondary sub-processes based on CSS1. Figure 13 (b) shows a surface 

model of the influence of two factors (CSS1 and SA1) on SPV, indicating the magnitude and behaviour 

of the function. It can be noted that the 2D SPV graph for the secondary sub-process presented in Figure 

13 (a) is an extract of the 3D graph shown in Figure 13 (b) at the SA value of 65 mm. It can also be noted 

in Figure 13 (a) that the SPV value is maximum around the CSS1 value of 40 mm. Design variable study 

is useful for understanding the mathematical response of the objective functions with respect to the 

important design variables. 

 

 (a)    (b) 

Figure 13. (a) SPV for varying CSS1 (For SA1 = 65 mm, CSS2 = 15 mm), (b) Influence of two variables (CSS1 

and SA1) on the SPV for secondary sub-process (For CSS2 = 15 mm) [Paper B]. 

4.2.3 Optimization Solution 

The implementation of the optimization method requires the creation of a coordinating algorithm to pose 

the optimization problem formulated. The implementation includes linking the optimization problem 

with the configured simulation model. Figure 14 shows a pictorial overview comparison of the MDF 

and IDF architecture communication, illustrating how MDF iteration is sequentially performed with the 

simulation model while the bi-level distributed IDF is parallelly solved [Paper B]. SQP was used to 

solve the optimization problem in Paper B. Figure 15 presents a comparison of the IDF architecture and 

MOO using GA communication, wherein the MOO problem considers the simulation model as black 

box, meaning that the algorithm brute-forces the model based on the applied settings in the GA to 

produce trade-off curves [Paper C]. 



 

 

33 

          

        (a)    (b) 

Figure 14. Comparison of (a) MDF and (b) IDF problem communication model for a two-stage crushing plant 

[Paper B]. 

                

          (a)    (b) 

Figure 15. Comparison of (a) IDF and (b) MOO (using GA) problem communication model for a two-stage 

crushing plant [Paper C]. 

The optimization method execution requires multiple micro-level decision entities for running an 

optimization method and algorithm. Several settings need to be selected, such as: 

• Choice of solver algorithm, e.g., sequential quadratic programming (SQP), GA 

• Tolerance criteria in the functional evaluation (objective and constraint) 

• Convergence criteria, maximum number of iterations, etc. for the optimization algorithm 

• Strategies of weights in the objective functions 

• Initial start points for design variable(s) 

Iterative learning is required to develop a recommendation of these settings. The choice governs the 

computational time, result quality and practical implications. For example, the MDO algorithms were 

found to be sensitive to the initial starting point of the algorithm, which is in line with the literature study 

of the gradient-based algorithm [Paper B]. It is recommended to test the MDO algorithm at different 

start points to address the lack of robustness in the application. In Paper C, the results from a genetic 

algorithm are dependent on the initial definition of population size, number of generations, etc. 

The solution obtained from the optimization method needs to be evaluated for two categories: 

convergence analysis and physical relevance. The convergence analysis deals with the understanding of 

the iterations required for the optimization algorithm, constraint activity and the behaviour of solution 

point(s) (optima and optimizers). The number of iterations reflects the computation time, while the 
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satisfaction of the constraint function reflects the feasibility of the solution point(s). The solution point(s) 

reflect the boundedness of the solution based on the upper and lower limits of variables defined in the 

optimization problem formulation. The solution points(s) also need to be checked for local optimization 

and global optimization, which can be reflected together with the understanding developed from the 

design variable study. The physical relevance of the optimization results is to check whether the solution 

is feasible to the practical operation. This can be discussed with the experienced personnel in the 

management and operation of such processes of the plant. The practical implementation of optimization 

results can be carried out after this stage. 

An example of the convergence analysis for the distributed IDF optimization problem is shown in Figure 

16 [Paper B]. The design variables and their duplicate copies reached convergence in six iterations. It 

can be observed that the two variables, CSS2 and SA1, are hitting the boundary value limits defined in 

the problem, while the CSS1 is converging to an interior optimum value (CSS1*= 44 mm). This is in line 

with the observation made in Figure 13 (a). For the posed problem, the solution is recommending 

operating the process with a maximum value of SA1, meaning opening the screen aperture at the 

secondary process to allow for an increase in the material flow to the tertiary process. The minimum 

value CSS2 means operating the tertiary crusher at the lowest CSS2 setting possible while operating the 

secondary crusher at a specific value of CSS1*. Changing the posed problem’s objective function and 

design variable limits can result in different recommended settings.  

 

 (a)    (b) 

Figure 16. Example of a convergence study for distributed IDF formulation a) number of iterations required for 

the convergence of the algorithm where constraints are satisfied, b) Design variable behaviour for the respective 

iterations [Paper B]. 

An example of the Pareto-front result for the MOO problem using GA for two objectives in a two-stage 

crushing plant is shown in Figure 17 [Paper C]. The purpose of the optimization application was to 

explore the solution space to find a trade-off between the maximization of the production of the fine 

materials and the minimization of the power drawn by crushers. The design variables for the problems 

were CSS1 and CSS2 for crushers in stages 1 and 2, respectively. The choice of the solution is based on 

the reasoning of the solution space. As seen in Figure 17 (a), there is a trade-off between the production 

of the fine materials and power, which resulted in three categories of solution space in Figure 17 (b). 
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                (a)     (b) 

Figure 17. Example of a) Pareto front and b) design points of the MOO problems using GA [Paper C]. 

• Category 1 is solution numbers 13, 17, 18, and 14, which consume a lower range of power and 

produce a lower range of fine materials. The corresponding solution set shows that the CSS1 is 

operating at the upper boundary, meaning that the first crusher is completely open and 

performing the least amount of work, while the CSS2 is also at a fairly open setting, resulting in 

low consumption of power. 

• Category 2 is solution numbers 9, 4, 1, 8, 12, and 6, which produce a large amount of fine 

materials at the expense of higher power consumption. The solution set recommends operating 

the CSS1 at the lower boundary, meaning closing crusher 1 to the lowest settings, while the 

CSS2 is varying within the limits defined in the problem definition. These solutions will have 

an implication on the maintenance of the first crusher.  

• Category 3 is solution numbers 5, 10, 11, 7, 16, 2, 15, and 3, which produce a relatively higher 

fraction of fine materials than the category 1 solutions, while the values in the power 

consumption vary in a larger range. These are interior solutions to the defined values of CSS 

limits in the optimization problem, especially for CSS1. The solutions are tending to operate the 

second crusher (CSS2) at the lower boundary of the CSS range. These solutions will have an 

implication on the maintenance of the second crusher. 

The user can select the most competitive solution depending on the judgement considering the physical 

plant, maintenance implications and production targets. Changing the defined problem definition by 

changing, e.g., objective functions, weights, constraint functions and variable limits would result in a 

different set of Pareto solutions. 

4.3 PERFORMANCE INDICATORS FOR CRUSHING PLANTS 

Performance indicators consist of a set of meaningful measurable entities of the crushing plant which 

can be used to carry out process improvements and process optimization. The performance improvement 

is iterative and can be carried out based on the process diagnostics with the support of the performance 

indicators. The process optimization can be carried out by using the performance indicator as an 

objective function in the optimization function. A three-stage crushing plant for aggregates production 

was used to demonstrate the implementation of the KPIs, as shown in Figure 18.  
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Figure 18. A three-stage crushing plant for aggregates production [Paper D]. 

In Paper D, a set of key performance indicators (KPIs) has been developed based on the ISO 22400 

Standards [95-98], as shown in Table 8. The KPIs were calculated based on the dynamic process 

simulation output and in parallel real-time measured production data of the process. The real-time data 

for the physical crushing plant was retrieved from the data collection system, consisting of a cloud-based 

solution for plant monitoring. The real-time data contained measurements of mass flow rate from 

conveyors, various process and equipment set points, and power consumption.  

Table 8. List of KPIs developed for the measurement of performance in aggregates production [Paper D]. 

Measurement Basis KPI Unit 

Planned and Real-Time Equipment Utilization 

Equipment Availability 

Process Availability 

% 

% 

% 

Logistical Quantities and Quality Throughput Rate 

Equipment Effectiveness 

Process Effectiveness 

Yield of Product 

Quality Ratio 

tph 

% 

% 

% 

% 

Power Consumption Specific Power 

Direct Power Effectiveness 

kW/tph 

% 

Overall Performance Overall Equipment Effectiveness Index 

Overall Process Effectiveness Index 

% 

% 

An example of the KPI calculation for crusher C11 in the aggregates production plant is shown in Figure 

19. It can be noticed that the KPIs have the capability to demonstrate the start-up and shutdown 

sequences of the crusher operation and highlight performance losses happening during the operations. 

The KPI value drop due to unscheduled stops occurring in the crushing operation can also be seen in 

crusher C11 at around the 3rd hour of the operation. The dynamic process simulation predicts the average 

KPIs over a shift to be close to the real-time data-based KPIs that can be seen for the crusher, although 

there are differences at the hourly calculations. This can be attributed to the assumptions and degree of 

information brought into the simulation. The KPIs can be applied to different time intervals (e.g., 30 

min to 30 days) depending on the requirement [Paper D]. 
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                (a)     (b) 

Figure 19. Crusher C11 performance based on process (a) simulation and (b) real-time data [Paper D]. 

From an industrial implementation perspective, performance improvement is possible from a multitude 

of solution types. For example, reducing the downtime of a crusher can lead to meeting the target 

production value, meaning the more up-time, the more production. But it does not necessarily contribute 

to the desired product type in production, for which the operational setting of the crushing needs to be 

modified. Modifying operation settings again can have consequences towards increasing or decreasing 

the downtime of the equipment and subsequent equipment performance change (screening load change). 

Other solutions, such as modifying the crusher feed, monitoring power consumption, or a physical 

investigation of equipment operation, can lead to insights on the improvement opportunities. It can be 

concluded that looking into the KPIs of the crushing plant can provide the first glimpse of the ample 

improvement opportunities, and simulation tools can be handy to test and try new solutions.  

To address the output difference between physical operation and simulation output, a novel approach to 

represent error propagation within the implementation of the KPIs is presented (see Figure 20). The 

choice of the type of equipment and process models directs the degree of fidelity of the simulation 

results. Each underlying equipment model is developed based on practical assumptions and the accuracy 

of the model is also dependent on the experimental calibration procedure applied. This induces an error 

in the estimation of reality and is denoted by ±φ1. The process simulation is configured with a 

combination of multiple equipment models, resulting in an error denoted by ±φ2, and the process 

simulation also receives input from physical processes, adding an error of ±φ3. In addition, the data 

captured during the physical operation also contains errors due to measurements, denoted by ±δ1, arising 

from sensor accuracy and maintenance status. Based on the underlying process simulation error (±φ4) 

and data measurement errors (±δ1), the KPIs calculation can be compared by calculating errors (±ωR) 

between the physical and simulation systems. It is of interest to estimate the accuracy in each stage of 

development, as the reliability of the simulation-based decisions is dependent on it. The errors associated 

with the equipment model and process simulation are calculated in Paper E, while errors associated with 

data measurements are presented in Paper F.  

(a) (b)
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Figure 20. Error propagation in the calculation of KPI from the simulated process and real-time data [Paper D]. 

In conclusion, the KPIs are useful for operators and plant managers of a crushing plant to identify 

performance improvement opportunities and can be viewed as a support tool for the decision-making 

process. Transformation of the KPIs using ISO 22400 is beneficial in benchmarking performance 

standards between multiple crushing plant processes and equipment operation.  

4.4 SIMULATION CALIBRATION AND VALIDATION FOR CRUSHING PLANTS 

As mentioned before, one of the underlying requirements for achieving process improvement and 

optimization using simulation is to maintain a low degree of error between the output of simulation and 

physical operation data. The choice of equipment and process model, together with the calibration and 

validation process, influences the outcome. An extensive study is performed to demonstrate the 

application of the optimization method for calibration of the equipment model in Paper E.  

Paper E presents an experimental survey and production data-based methodology together with the use 

of optimization methods to calibrate and validate crushing plant simulation. Figure 21 represents a 

schematic view of the pillars for the model calibration for equipment and process simulation based on 

the source of the data. The first source of data is laboratory data, which includes standard material 

characterization tests of, for example, material density, compressive stress, moisture content, breakage, 

etc. The second source is experimental survey data, which includes controlled experiments performed 

on individual equipment or processes to collect belt-cut material samples. The results from this provide 

a snapshot performance of the process and equipment at different operational settings. The third source 

of data is production data, which refers to controlled data of crushing plant operation, such as mass flow, 

power, process set points, and control signals. These data sets are characterized as continuous time-

dependent data and influenced by more than one equipment behaviour. The three data forms create a 

different abstraction of the information captured from crushing plants.  

To create utilization of simulation platforms for daily operation performance control (refer to Figure 9), 

there is a need to re-think the approach by which different existing models are built and used. Most 

mechanistic and phenomenological models of equipment are developed based on laboratory and 

experimental data together with the understanding of the machinery. Transforming the existing models 

to use and adapt to different data sources requires computationally efficient optimization methods in 

order to fit the model to the data. Another approach for modelling is to develop a completely new data-

driven approach based on production data such as machine learning. In both cases, there is also a need 

to design new ways of performing the experimental survey to collect controlled data from the crushing 

plant.  
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Figure 21. Generalized overview of the model and process calibration based on the sources of data [Paper E]. 

Figure 22 presents the layout of the tertiary crushing stage used in Paper E. A novel approach to 

experimental design for collecting the experimental and production data was also described in this paper; 

see Figure 23. The essence of the design of the experiment was to capture continuous production data 

(mass flow and power) together with snapshot performance of equipment (crusher and screen) through 

belt-cut sampling. The crusher settings were altered in different tests. The snapshot data were used to 

calibrate the individual equipment model used in the dynamic process simulation, while the production 

data were used to validate the process simulation; see Figure 24.  

 

Figure 22. A tertiary crushing stage for an aggregates production plant [Paper E]. 
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Figure 23. Experimental sequence applied for mapping the circuit performance of the crushing plant [Paper E]. 

 

Figure 24. Steps for calibration and validation of dynamic process simulation of the crushing plant [Paper E]. 

A unique and simple optimization approach using an unconstrained gradient-based approach (quasi-

Newton method) was applied to calibrate the fast-mechanistic crushing model; see Table 9. The 

optimization problem definition is a weighted sum approach with two sequential optimizations: 

Capacity Optimization and Product Size Distribution Optimization with 10 variables (k). In Capacity 

Optimization, the objective function is to minimize the sum of the relative errors between the crusher-

measured capacity (CapDi) and the simulated capacity (CapSi) for the n number of tested settings of CSS. 

In the PSD Optimization for the crusher, the objective function is to minimize the weighted (wj) sum of 

errors for the data (PSDfDji) and the simulation (PSDfSji) for the values of the n number of tested settings. 
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The PSD Optimization problem is posed in the frequency domain of the size distribution for the m 

number of given sieve sizes (xsize), and mat represents the nominal material characterization values for 

a given material type.  

Table 9. Crusher optimization problem formulation for the fast-mechanistic model [Paper E]. 

Crusher Optimization Problem Formulation 
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The purpose of the weighted function (wj) is to steer and compensate for the distribution of the number 

of data points available at different sieve size ranges (xsize) (see Figure 25). The function weighs more 

on the coarse end of the particle size range than on the fine end of the particle size range, which is useful 

to avoid over- and underfitting of the model with respect to the data. The details of the model calibration 

can be found in Paper E. 

 

    (a)    (b) 

Figure 25. Graphical representation of the weighted function used in the optimization problem formulation 

[Paper E]. 
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Figure 26 represents crusher calibration results for different tested CSSs in the frequency domain. It was 

crucial to work with the frequency domain for the optimization problem rather than the cumulative 

domain, as the former avoids accumulated error in different sieve size data. In essence, the problem was 

decoupled for every sieve size fraction and test condition. Similarly, a modified Whiten [39] partition 

curve for the screen model was applied and calibrated with the tested screen samples using 

unconstrained gradient-based optimization (quasi-Newton method). The calibration process resulted in 

a single set of model variable values for all tested conditions. The detailed results are provided in Paper 

E. 

 

         (a)                 (b) 

 

         (c)                 (d) 

Figure 26. Crusher calibration results to the belt-cut experimental data in the frequency domain of the product 

size distribution [Paper E]. 

The configured and calibrated dynamic process simulation results were validated against the production 

data; see Figure 27. Table 10 presents the root mean square error (RMSE) values for each product stream 

and test conditions. The RMSE values are low for most cases, except product P8/16 mm and P16+ mm. 

The origin of the error can be either associated with the crusher model or screen model or the production 

data itself. Evidence of dynamic interaction effect in the performance of screens and crushers was found, 

especially at the coarser end of the product range where the capacity and PSD of the crusher product 

dynamically affects the performance of the screen [Paper E]. 
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Overall, for the process performance prediction, it is satisfactory to use such models for process 

optimization and process planning for aggregates production. Closeness to the operational prediction is 

key to generating reliable results and increasing the degree of accuracy at this stage, which in turn 

increases confidence in the results of process improvement and optimization. Additionally, a new form 

of model and calibration process is needed to achieve seamless integration of the physical and simulation 

systems of the crushing plant. 

 

Figure 27. Dynamic simulation process results compared with production data for the four test conditions. 

[Paper E]. 



Optimization Capabilities for Crushing Plants 

 

 

44 

Table 10. RMSE calculation between process simulation and production data [Paper E]. 

Product Stream T01 T02 T03 T04 

Crusher Product 6.42 3.90 3.22 3.40 

P8/16 mm 14.38 6.05 4.20 8.75 

P16+ mm 5.10 8.40 11.38 7.72 

P4/8 mm 2.56 0.70 1.77 1.48 

P2/4 mm 2.06 0.78 1.28 1.01 

P0/2 mm 1.90 2.42 2.22 1.50 

4.5 CRUSHING PLANT MASS FLOW DATA 

Crushing plant data consist of offline and online data, as described in Section 4.1.1: Physical System. 

Among many different data types in the data collection system, mass flow measurements are critical 

data that are utilized in the calculation of product volume, production rate, energy impact, etc. The 

improvement and optimization of the crushing plant performance is directly dependent on the 

accountability of the mass flow. Accurate estimation of the mass flow from the physical process is 

required for sales, legal compliance, and process simulation validation. There are multiple mass flow 

measurement systems present in the industrial application based on different principles, for example, 

load cell-based, laser profilometer, ultrasonic sensor, and power-based belt scale. These systems vary 

largely on aspects such as cost, accuracy, and maintenance. 

In Paper F, a cost-effective method was shown for the calibration of a power-based belt scale together 

with the monitoring and detection of deviations in the estimation for the mass flow. The principle behind 

the mass flow estimation is that the power draw from a conveyor belt is dependent on the load on the 

conveyor, conveyor speed, geometrical design, and overall efficiency of the conveyor [116]. Figure 28 

presents the working principle of the power-based belt scale, where m is the mass flow rate, PLoad is the 

power required to lift material, CGeom is a geometrical constant and is the total efficiency of a 

conveyor.  
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Figure 28. The working principle of a conveyor lifting material [38] [Paper F]. 

The crushing plant layout used in Paper F is presented in Figure 29, which is a tertiary stage of a three-

stage aggregates production plant, and each conveyor is equipped with a power-based belt scale. An 

error minimization optimization problem was applied to calibrate accessible conveyors (access to 

physical measurement) and the mass balancing property of the circuit is used to calibrate the non-

accessible conveyors (limited or no access to physical measurements); see Table 11.  
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Figure 29. Crushing plant layout for the implementation of conveyor mass flow calculation [Paper F]. 

Table 11. Optimization problem formulation and deviation tracking for power-based belt scale [Paper F]. 
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The generalized error minimization optimization problem for the efficiency calibration of an individual 

conveyor is given, where i is the number of test samples, ei is the relative error function, QiC is calculated 

accumulated mass, QiM is measured accumulated mass for a tested time interval, and t1 and t2 represent 

the start and end times for the calibration for one test. For a given time of operation, at any node in a 

crushing circuit, the accumulated incoming material mass is equal to the accumulated outgoing mass 

under negligible material loss conditions. The error function is given by εk, where k is a node in the 

circuit, n and m are the numbers of mass measuring units before and after the selected node in the plant 

circuit, respectively, and ηu is the non-accessible conveyor efficiency.  
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The solution and choice of the algorithm in calibrating non-accessible conveyors is dependent on circuit 

layout and resulting mass balancing equations. If the number of error equations is less than or equal to 

more than the number of non-accessible conveyors, an under-constrained, full constrained, or over-

constrained optimization problem is formulated, respectively. The optimization problems can be solved 

using gradient-based constrained optimization algorithms such as the interior-point algorithm. 

The power-based belt scale is a cost-effective solution for mass flow estimation but, as any other 

measurement system, it requires re-calibration. The need can arise due to either gradual changes over 

time, such as component wear, or more instant changes like a rock getting stuck in a roller. The reliability 

of the mass flow estimation is tracked using the principle of mass balancing of the system. A correlation 

matrix Apk is developed between the conveyor mass flow and the error function based on the layout of 

the circuit. Conveyor Error Factor (CEF) and Conveyor Error Ratio (CER) are calculated using the Apk 

matrix; see Table 10. CEF indicates the total mean error associated with each conveyor (p) with respect 

to the entire system and CER indicates the proportion of the error contributed by each conveyor (p) to 

the entire system. The detailed description can be found in Paper F. 

The value of the CER is ranked, and the conveyor with the higher value is investigated first. The value 

of CEF indicates the magnitude of the deviation. The impact of this magnitude is dependent on the rated 

capacity of the conveyor. Based on the values of CER and CEF together, decisions are made: 

• If the values are within allowed statistical limits, retain the efficiency value of the conveyors. If 

the values are deviating towards a certain direction, create an alert for operators to inspect the 

conveyor for any change in physical operation. 

• If the values are above the allowed limit, initiate re-compensation of the deviating conveyor 

with a new value of efficiency. This is carried out by modifying non-accessible conveyor 

optimization problem formulation depending on the identified deviating conveyor. In this case, 

the efficiency value of the deviating conveyor is set as an unknown variable. 

As an example to test the calculation of the correlation matrix, values of CER, and CEF, two hypothetical 

test cases were carried out for the crushing plant in Paper F (see Table 12). A 10% change in efficiency 

value for conveyors CV4 and CV7 was performed in Test 1 and Test 2, respectively. The method detected 

CV4 to be deviating and the magnitude of CEF was also significantly increased. For Test 2, changing 

CV7 resulted in an alert for both CV6 and CV7 because of the possible relations which are created using 

the correlation matrix. This is limited on account of plant layout and conveyor connections. 

Table 12. Testing of CEF and CER values for hypothetical test cases [Paper F]. 

 Correlation Matrix Day 1 Test 1 Test 2 

Apk ε1 ε2 ε3 ε4 ε5 ε6 CEF CER CEF CER CEF CER 

CV1 0 0 1 1 1 0 2.87 0.12 42.28 0.11 11.81 0.12 

CV2 1 0 1 0 0 1 6.41 0.26 42.28 0.11 11.81 0.12 

CV3 1 0 0 1 1 1 4.30 0.18 60.76 0.16 15.05 0.16 

CV4 1 1 0 1 0 0 2.87 0.12 118.06 0.32 12.33 0.13 

CV5 1 0 1 0 0 1 6.41 0.26 42.28 0.11 11.81 0.12 

CV6 0 1 0 0 1 1 4.02 0.17 43.96 0.12 27.81 0.29 

CV7 0 1 0 0 1 1 4.02 0.17 43.96 0.12 27.81 0.29 

B1 0 0 1 1 1 0 2.87 0.12 42.28 0.11 11.81 0.12 

Day1: εk 6.1 1.7 5.3 0.7 2.5 7.8 24.17k =  Calibration Data 

Test 1:εk 113.6 121.5 5.3 119 2.5 7.8 369.86k =  Change in CV4 efficiency by + 10% 

Test 2:εk 6.1 30.1 5.3 0.7 29.3 24 95.64k =  Change in CV7 efficiency by + 10% 
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It was also observed through Tests 1 and 2 that the magnitude of CEF is dependent on the size and 

capacity of the conveyor as CV4 is of higher capacity than CV7, which needs to be taken into account 

in the decision for the conveyor re-calibration. Periodic calibration of the conveyors is required to 

maintain reliability within the data collection system. This is a step towards developing a robust mass 

measurement solution where the system can detect changes. The proposed methodology can lead to 

design rules for the implementation of an automatic calibrating mass flow system using a power-based 

belt scale technique. 

  



Optimization Capabilities for Crushing Plants 

 

 

48 

 

 

 



 

 

49 

 

5 DISCUSSION & CONCLUSIONS 

This chapter aims to: 

 Present and discuss the most important conclusions drawn in this thesis. 

 Answer the research questions stated in Chapter 1. 

 Discuss the validity of the research.  

 Discuss industrial relevance and future work. 

 

This thesis aimed to investigate and develop optimization capabilities for crushing plants. Multiple 

studies were performed at various abstraction levels to develop and demonstrate the functionality needed 

to realize optimization capabilities for crushing plants [Papers A-F]. During the iterative development 

work, the application of optimization methods multi-objective optimization (MOO) and multi-

disciplinary optimization (MDO) were applied at the process level using dynamic process simulation of 

a crushing plant [Papers B and C]. An implementation of the ISO 22400 standard for aggregates 

production in dynamic process simulation was demonstrated and compared with the production data 

from an industrial crushing plant operation [Paper D]. A detailed optimization method for calibration 

and production data-based validation of the dynamic process simulation including cone crusher and 

screen models was presented [Paper E]. To assure the quality of the production data, an application of 

an optimization method for calibration and maintenance of power-based belt scales together with mass 

flow deviation tracking was shown [Paper F]. A multilayer holistic perspective for building optimization 

capabilities for crushing plants was demonstrated. 

5.1 ANSWERS TO RESEARCH QUESTIONS 

The following answers are given to the research question stated in this thesis together with the 

reclarification of the set of investigations performed under each research question. 

RQ1 - What are optimization system requirements for developing optimization capabilities in 

crushing plant operations?  

The following aspects are needed to perform a generic optimization application for a crushing plant in 

operation: 

- Define the purpose of optimization system capability 

- Frame optimization problem formulation for the crushing plant 

- Compare various possible optimization methods and algorithm applications  

- Explore the underlying requirements to produce a suitable optimization result 

- Evaluate different optimization methods for practical applications 

A multi-layered modular framework for the implementation of optimization capability for crushing 

plants is presented (see Figure 9). To achieve improvements and optimization in the physical system for 

stakeholders’ requirements, the use of a parallel simulation system is proposed. The simulation system 

consists of four layers – equipment and process modelling, model implementation, key performance 

indicators and an optimization function with consistent connection with the physical system. These 
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represent components of the framework in an interconnected system solution that are required to build 

optimization capabilities for crushing plants in operation. 

A classification scheme to define the purpose (design, operations, and control) and scope (equipment, 

sub-process, and main process) of the optimization application is presented in Paper A. The 

classification scheme helps in defining the model requirements as a system perspective, wherein the 

interaction elements of the underlying simulation model such as input, output, value-adding functions, 

variables, and parameters are clearly presented. The classification scheme is useful for communicating 

the purpose of the optimization application to the research and industry communities.  

The application of multiple optimization approaches – multi-objective optimization (MOO) and multi-

disciplinary optimization (MDO) – are demonstrated in Paper B and Paper C for crushing plant 

optimization. In Paper B, two MDO architecture frameworks – multi-discipline feasible (MDF) and 

individual discipline feasible (IDF) – were applied in the context of a crushing plant consisting of two 

sub-processes. In Paper C, a comparative study between the IDF and MOO using a genetic algorithm 

was carried out. The MDO methods used in the studies were aimed at finding a balance point between 

the various objectives of the crushing plant, while the MOO using the GA method was aimed at 

exploring the spectrum of the solution space using Pareto front. The MDO methods help in decoupling 

multiple optimization problems which exist in the complex relationship of crushing plant operations. 

The purpose of the optimization application directs the choice of methods and computation time, and it 

is recommended to use more than one method to generate a comparison of the results and check the 

triangulation of the solution points.  

In Papers B and C, a standard representation of the optimization problem formulation in negative null 

form was presented for a variety of optimization cases. This is required for the problem replication as 

the global optimization results are dependent on the problem definition of the optimization, which can 

be subject to change based on the stakeholder’s needs. To perform iterative calculation in the selected 

optimization method, it is necessary to model the communication between the optimization algorithm 

and the crushing plant model. A modular approach needs to be maintained to clearly define the 

interaction of the objective function, design variables, parameters, and constraints with the model in the 

crushing plant simulation. It is necessary to maintain the validity of the process simulation and check 

the convergence graphs for the optimization results. The results obtained from the given crushing plant 

optimization problem need to be intuitively evaluated concerning the equipment and process knowledge 

for practical application, which is a subjective process. This is especially required when the solution 

points generated are at the boundary optima.  

 

RQ2 - How can the process performance objectives be formulated for carrying out process 

optimization and process improvements in crushing plant operations? 

The following steps are performed to present process performance objectives for a crushing plant in 

operation: 

- Define different performance indicators of the crushing plant 

- Formulate the calculations of performance indicators 

- Demonstrate the application of performance indicators for the crushing plant 

Process optimization and process improvements are complementary approaches to increase crushing 

plant performance with respect to defined objectives or goals from stakeholders’ points of view. Process 

improvements can be defined as increasing the process performance through multiple means, such as 

iterative learning and experience. Process optimization, on the other hand, can be defined as a 

mathematical process of employing a numerical approach to define the scope of the problem, solve the 
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problem, and generate alternative solutions towards the desired goal of the stakeholder. To achieve both 

process optimization and process improvements, mathematical representations of the objectives with 

respect to the crushing plant technical performance are required.  

A process objective can be defined as a mathematical function that indicates the process performance 

of interest for a crushing plant operation. In Paper D, a list of key performance indicators (KPIs) has 

been developed and implemented based on the ISO 22400 standard for aggregates crushing plants in 

dynamic process simulation. The KPIs can represent equipment performance or process performance 

depending on the scope of the application. Results of the implementation in a dynamic process 

simulation bring the KPIs study closer to the real-time production operation. For the process 

improvement, a new conceptual operation strategy can be tested and verified in a simulation system 

before implementation in the physical operation of the plant. For process optimization purposes, the 

KPIs can be used as an objective function in the optimization problem formulation, for example, 

maximizing product yield, maximizing product throughput, etc. In Papers, B and C, the application of 

process performance indicators such as technical function (e.g., throughput rate, power consumption) 

and techno-economic function (e.g., sub-process value) for optimization objective functions have been 

demonstrated. These functions represent the different goals for the optimization problem formulation, 

and implementation on the simulation platform allows for a cost-effective method of exploration. It is 

also possible to customize KPIs for optimization depending on the organizational needs.  

 

RQ3 - What are the critical requirements on the process simulation platform, equipment models, 

experimental and process data to be used in the optimization system?  

The following steps were needed to identify the requirements for using a simulation platform to carry 

out optimization application: 

- Identify the process simulation calibration and validation requirements  

- Identify the equipment model calibration and validation requirements 

- Investigate the opportunities and limitations of experimental and production data collection 

processes 

- Investigate methods for evaluating production data reliability 

Optimization routines are implemented with an interaction to the dynamic process simulation for the 

crushing plant. The reliability of the optimization results is a function of the configured, calibrated, 

validated, and verified process simulation. The reliability of the process simulation, in turn, is a function 

of the equipment model, and data used for the calibration and validation of the model. Papers E and F 

present the application of optimization methods for process calibration and power-based belt scale 

calibration, respectively.  

To assure the reliability of the dynamic process simulation, a controlled method for equipment model 

(crusher and screen) calibration using a computationally effective optimization method for multi-point 

test conditions was presented in Paper E. A novel approach to defining optimization problem 

formulation with a weighted function for a cone crusher model is shown. The weighted function enables 

compensation of the distribution of the data points available at different sieve size ranges to generate a 

good model fit. Both the objective function for crusher and screen model fitting optimization problem 

formulation use frequency distribution data for the sieve size range rather than the use of cumulative 

distribution. A method for controlled experimental design for collecting multiple forms of data (belt-cut 

samples and production data) was demonstrated. The validation of the process simulation was performed 

by comparison of the root mean square error (RMSE) values between the results of the dynamic process 

simulation and the collected production data. During the investigation process, the complex 
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relationships and interdependencies between crusher performance and screen performance were also 

highlighted. The implication of the changing screen performance with respect to the crusher products 

leads to material quality (grade) change for the aggregates.  

Any process improvements and process optimization performed at a crushing plant need to be evaluated 

with the use of production data. One type of production data critical for the crushing plant operation is 

the mass flow data. In Paper F, an application of an optimization method for calibration of accessible 

and non-accessible power-based belt scale units for an industrial crushing plant is demonstrated. The 

calibration process is a two-fold process. Firstly, physical measurements were performed on the 

accessible conveyors to calibrate the unknown factors for the power-based belt scale by minimizing the 

error between the physical measurements and the recorded power data. The second process is the 

utilization of the mass balancing property of the crushing plant operation to estimate the unknown 

factors for the non-accessible conveyors. Further on, a novel approach to tracking the deviation in mass 

flow during operation using a correlation matrix is presented. Data sanity check is an important step in 

utilization for model calibration, simulation process validation, quantification of process improvements 

and optimization.  

In essence, the use of optimization problem formulations in a standard form such as the negative-null 

form for both model calibration and sensor calibration is required for the replication of the results. 

Gradient-based optimization algorithms are found to be viable for solving such problems. Learning from 

the applied optimization methods showed that the knowledge about the system under study is generated 

iteratively. The formulation of optimization problems as constrained or unconstrained depends on the 

understanding of the physical system and knowledge about the model and its limitations.  

5.2 RESEARCH VALIDITY 

The research presented in this thesis is a combination of explorative and confirmative studies employing 

both simulation-based studies and experimental-based studies. The research output presented includes 

multiple interdisciplinary fields and a subjective approach is applied to evaluate the research validity. 

Multiple optimization methods have been explored at different abstraction levels within the 

development of optimization capabilities for crushing plants. The developed and applied optimization 

methods are based on a theoretical understanding of the optimization concepts [19, 31, 35, 37] and 

previous research work within aggregates and minerals processing simulation [Papers A-F]. The 

optimization studies were evaluated using certain testing criteria such as convergence analysis and 

comparison of the results by different methods [Papers B, C]. The development of KPIs was based on 

the ISO 22400 standard and the results of the simulation studies were compared to the physical system 

[Paper D]. The calibration and validation studies for the crushing plant simulation shown in Paper E 

were experimentally based together with a reliance on a theoretical framework of models and 

optimization methods. These arguments support the high internal validity [27] of the results obtained 

from the individual studies conducted for this thesis. The optimization methods applied [Papers B, C, 

E, F] and developed KPI models [Paper D] have external validity [27] as they can be transferred to other 

simulation studies within other comminution and classification processes, with necessary modifications.  

The use of previous theoretical knowledge also supports the structural validity of the results [28], 

although the specific results and values obtained in different studies were from crushing plant sites and 

case-study specific. The results in Papers E and F were quantitively evaluated and compared with 

experimental data, leading to high performance validity of the methods demonstrated. The comparison 

of different optimization methods in each simulation study was carried out at equivalent parameter 

settings of the underlying process simulation, thus allowing fair reliability of the comparative results 

obtained in Papers B and C [30]. Systems thinking together with the problem-based approach helped in 
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compartmentalizing each research problem in the thesis. This also assisted in the modularization of the 

solution. Limited system integration of different developed methods is performed at this stage and will 

be the next natural step in the development.  

5.3 INDUSTRIAL AND OPTIMIZATION RELEVANCE 

Optimization capabilities for crushing plants is a system solution with the two-fold application of: 

• Utilizing the simulation platform for identification and exploration of operational settings based 

on the stakeholder’s need to generate knowledge about the process operation [Papers A, B, C 

and D].  

• Assuring the reliability of equipment models, process models and production data to create 

validated process simulations that can be utilized for process optimization and performance 

improvements [Papers E and F]. 

The simulation platform can be utilized to explore the potential and limits of the physical operation with 

an aim towards process optimization and process improvements. The underlying simulation model and 

data need to be validated, which requires experimental procedures, suitable optimization methods and 

automation for increased utilization. This further entails development in a digitally integrated solution 

wherein the simulation platform can continuously interact with production data, and optimization 

methods can reside in the simulation system to assist a user in plant operation.  

Optimization is a misused term that can be found in many pieces of literature, reports, communication, 

etc. and is often misinterpreted as referring to improvements, which represent the betterment of a 

solution as compared to another solution. Process improvement is an iterative process that can be carried 

out based on experience and understanding of the process, while process optimization is a mathematical 

process. Process optimization can be carried out by utilizing the optimization methods together with the 

underlying simulation and performance measurement system. The data collection system together with 

the real-time performance calculations can help in the distinction of benefits of the process improvement 

and process optimization.  

For operations purposes, the user, such as the operator or plant manager, can set the goal of the 

optimization using either the historical performance or new requirements to find recommended 

operational settings. It could also be used as an explorative tool to get recommended settings for new 

requirements and to produce trade-offs between conflicting objective functions. For design purposes, 

the optimization can be used to explore the performance boundaries of a new process layout.  

Application of optimization needs to be transparent with clear boundary conditions. To clearly define 

objectives, constraints, and design variables, it is necessary to present the optimization problem 

formulation in a standard form (e.g., negative null form). This also assists in making practical choices 

in the industrial application as the solution can be debated, technically analysed, and evaluated for a 

suitable use case.  

Simulation and equipment model calibration and validation are currently performed by only a limited 

number of experts in research and companies. The development of suitable optimization methods within 

a simulation system can enable the democratization of such processes, making them simple and easy to 

perform for a wider set of users. 

The reality of a crushing plant operation is of course much more complex than described in the 

simulation environment. Dynamic simulation is shown to be suitable for use in both KPI calculation and 

optimization application as it captures a closer approximation of the real situation than is obtained with 

steady-state simulation. The KPI improvements and optimization are performed using bulk performance 
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measurements for a user-specified time duration, although the reality is always dynamic. It is also 

computationally not viable to optimize every time step in process operation, while it is essential to assess 

the findings in dynamic simulation. Changes in the operational settings of the process can influence the 

stability of the process. This can occur due to equipment capacity limits, the configuration of conveyors, 

plant layout, etc., which can be evaluated in a dynamic simulation. The output of the operation can also 

change over time due to the maintenance status, wear, material change, etc. of the crushing plant, for 

which dynamic simulation is suitable for evaluation. Currently, the use of KPIs is very popular in the 

industry to make decisions and there is a need for customization for individual company demands. The 

calculation of the KPIs relies on the production data and a decision made using KPIs is as good as the 

range and quality of the data collected. 

5.4 FUTURE WORK 

The thesis presented multiple methods in a toolbox that can be implemented at different abstraction 

levels for developing optimization capabilities in crushing plants. The methods developed are based on 

individual studies performed with different industrial partners. The following presents a list of research 

and developments that can be undertaken to bring further insights to the framework of optimization 

capability for crushing plants: 

5.4.1 Method Development 

• Production data characterization techniques: This relates to determining and evaluating the 

different requirements on the capture of production data of a crushing plant. This can include 

developing guidelines and methods for handling data and evaluating data robustness for 

different use cases. This in turn can enable the translation of continuous production data for 

different uses: evaluating optimization results, key performance indicator mapping, 

environmental impact calculations, model calibration, model validation, etc.    

• Equipment Modelling: The modification of existing equipment models used in process 

simulation to comply with the production data instead of laboratory data can be performed. This 

can eliminate the need for expensive experimental work performed in the industry. New model 

types such as machine learning can also be explored for such applications.  

• Simulation process calibration using continuous production data can enable maintenance of the 

reliability of the results. This can be developed by performing a controlled experimental 

procedure for crushing plants to collect production data together with applying suitable 

optimization methods. Dynamic simulation of crushing plants is appropriate for such 

applications. The development can further enable a cost-effective and seamless method of 

simulation use for the industry. 

• Optimization objective functions can be developed to include aspects such as demand, sales, 

cost, revenue, and environment for aggregates production. This is further needed to create a 

range of objective function libraries that can be used by different stakeholders involved in the 

crushing plant. The use of other gradient-based optimization methods can be explored.  

5.4.2 Method Implementation 

• Integration of individual components of the optimization capabilities for crushing plants in an 

IT solution can be performed. This is a development process that requires close industrial 

collaboration and can lead to the development of new product features. 
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• Creating an industrial case study for end-to-end implementation of optimization results in an 

industrial use context is required for testing the framework presented in this thesis.  

The methods applied in the thesis were developed by focusing on the aggregates processing industry. 

There are possibilities to extend the methods for the mineral processing industry, which needs a detailed 

investigation. The optimization functions developed at this stage are directed towards aggregates 

production, and the transferability of these to minerals processing in mining will be studied in future 

work.  
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