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Abstract 

Restraint factors and partial coefficients are essential in analyses of the risk of cracking 
of early age concrete structures. The degree of restraint in a structure or a structural 
element is almost proportional to the risk of cracking, and the partial coefficients are 
the statistic measures of the risk of thermal and moisture related cracking in early age 
concrete. 

 The accuracy in the determination of the degree of restraint is one of the most 
important issues that have to be considered in thermal stress analyses. The restraint is 
needed in order to enable reliable thermal crack risk estimation. Such a estimation will 
contribute to an improved service lifetime and function of a concrete structure. A 
semi-analytical method has been derived for the determination of the restraint variation 
in early age concrete elements cast on older and adjacent elements. The method is 
derived using the Compensation Plane method according to the linear elastic theory. 
The model depends on the geometry of the structure, the Young�s modulus of the 
structural elements, the boundary restraint situation, and the location of the newly cast 
concrete element on the old element. 

 The model is further developed for the typical case wall-on-slab. Straightforward 
and simple expressions are derived for the restraint variation in the wall. In the model, 
effects of high walls are regarded in form of non-linear deformations for walls with 
completely restrained bases. The model is supplemented with effects concerning possi-
ble slip failure at the joint between the young and the old concrete. The decisive point 
for maximum tensile stresses and at where the restraint should be determined is briefly 
described and discussed. 

 Necessary adjustment tools are developed, determined and presented in order to 
achieve good correlation. Exactly 2920 3D elastic FEM calculations form the reference 
of the model. The adjustment tools consist of effective width of the slab, effects of 
relative location of walls on slabs, high wall effects, effects of possible slip failure in 
joints, and finally on the degree of boundary restraint. By use of the adjustment tools, 
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good agreement is achieved between the restraint variation determined by the semi-
analytical method and by the reference values from the FEM calculations. 

 It has been shown that the structural restraint behaviour of structural elements can 
be described by means of restraint coefficients giving an agreeing thermal stress devel-
opment compared to both more exact Finite Element (FE) calculations and measured 
stresses in a full-scale structure. The restraint coefficients are in a stress calculation 
applied as a direct reduction of the fixation stress during both the expansion and con-
traction phase of a hardening concrete in a structural element. The restraint coefficients 
established by the semi-analytical method give an acceptable accuracy compared to 
both more realistic viscoelastic approaches including models describing the hardening 
young concrete as well as the measured and observed restraint behaviour of a real full-
scale structure. 

 Partial coefficients for thermal cracking problems have been determined by a prob-
abilistic method. The calculated values of the partial coefficients have been compared 
to values stated in the Swedish building code for bridges. The values in the code are 
only based on experiences and logical reasoning, whereas the calculated coefficients are 
determined with various possible coefficients of variation of the used variables. Wide 
ranges of possible results depending on the input have been shown. However, with use 
of realistic material properties and reasonable assumptions related to thermal cracking 
problems, good agreement is achieved between the stated values in the code and the 
values obtained by the probabilistic method. 

 

Keywords: restraint; early age concrete; cracking; resilience; joint slip; wall-on-slab; 
partial coefficients; probabilistic method 
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Sammanfattning 

Tvångsfaktorer och partialkoefficienter är nödvändiga i sprickriskanalyser av unga 
betongkonstruktioner. Graden av tvång i en konstruktion eller ett konstruktionsele-
ment är så gott som proportionell mot risken för sprickbildning, och partialkoefficienter 
är det statistiska måttet på risken för termisk och fuktrelaterad sprickbildning i unga 
betongkonstruktioner. 

 Precisionen i bestämning av graden av tvång är en av de viktigaste frågeställningarna 
som måste beaktas för temperaturspänningsanalyser för att möjliggöra tillförlitliga ter-
miska sprickriskuppskattningar. Detta i sin tur bidrar till förlängd livslängd och 
säkerställande av betongkonstruktioners funktion. En semi-analytisk metod har härletts 
för bestämning av tvångsvariationen i unga betongelement gjutna på äldre angränsande 
element. Metoden är härledd med grund i utjämnande planmetoden (Compensation 
Plane method) enligt linjär elasticitetsteori. Metoden beror på konstruktionens geome-
tri, elasticitetsmodulen hos de ingående elementen, graden av randtvång och nyligen 
gjutna betongelements relativa läge på äldre och angränsande element. 

 Metoden är vidareutvecklad för typfallet vägg på platta. Ett enkelt och rättframt 
uttryck har härletts för tvångsvariationen i väggar. I modellen behandlas effekten av 
höga väggar genom ickelinjära deformationer för väggar med fullständigt fastlåsta bot-
tenränder. Modellen är kompletterad med effekter rörande eventuella glidbrott i gjut-
fogen mellan den unga och den gamla betongen. Den bestämmande punkten för 
maximala dragspänningar och där tvånget bör bestämmas är övergripande beskrivet och 
genomgånget. 

 Nödvändiga justeringsverktyg för typfallet vägg på platta har utvecklats, bestämts 
och presenterat för att uppnå bra överensstämmelse med exakt 2920 3D elastiska FEM-
beräkningar som utgör referensen för modellen. Justeringsverktygen består av effektiv 
plattbredd, effekter av väggars relativa läge på plattor, effekter av eventuella glidbrott i 
gjutfogar, och slutligen på graden av randtvång. Genom användandet av justeringsverk-
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tygen uppnås bra överensstämmelse mellan tvångsvariationer bestämda med den semi-
analytiska metoden och referensvärdena från FEM-beräkningarna. 

 Tvångskoefficienterna enligt den semi-analytiska formuleringen har använts i en 
förenklad direkt beräkningsmetod för spänningar som har jämförts med mer exakta 
FEM-beräkningar och uppmätta spänningar i fullskalekonstruktioner. God överens-
stämmelse erhölls i båda fallen. Tvångskoefficienterna är i spänningsberäkningarna 
tillämpade som en direkt reduktion av fastlåsningsspänningen under både expansions- 
och kontraktionsfaserna hos en hårdnande betong i ett konstruktionselement. Tvångs-
koefficienterna i den direkta metoden är således helt jämförbara med både mer realistis-
ka tvångsförhållandena erhållna enligt FEM-beräkningarna och observerade 
tvångsbeteenden i en riktig fullskalekonstruktion. 

 Partialkoefficienter för temperatursprickriskproblem har bestämts med en sannolik-
hetsteoretisk metod. De beräknade värdena på partialkoefficienterna har jämförts med 
värden givna i den svenska bronormen. Värden i normen är endast baserade på erfaren-
het och logiska resonemang, medan de beräknade koefficienterna är bestämda med 
olika och möjliga variationskoefficienter för de ingående variablerna. En stor vidd av 
möjliga resultat beroende på indata har påvisats. Emellertid, med användande av realis-
tiska materialegenskaper och förståndiga antaganden relaterande till den termiska 
sprickproblematiken har bra överensstämmelse erhållits mellan de givna värdena i 
normen och värden bestämda med den sannolikhetsteoretiska metoden. 

 

Nyckelord: tvång, ung betong, sprickbildning, resiliens, gjutfogsglidning, vägg på 
platta, partialkoefficienter, sannolikhetsteoretisk metod 
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1 Introduction 

Restraint factors and partial coefficients are essential in analyses of the risk of cracking 
of early age concrete structures. The degree of restraint in a structure or a structural 
element is almost proportional to the risk of cracking, and the partial coefficients are 
the statistic measures of the risk of thermal and moisture related cracking in early age 
concrete. 

 Early age cracking of young concrete in civil engineering structures should be 
avoided, for instance in tunnels beneath the ground water level and in bridges exposed 
to chlorides and/or possible freezing and thawing cycles at high humidity situations. 
Through cracking in structures with water pressure on one side will lead to water flow 
through the structure for all visible cracks, i.e. for crack widths more than about 0.1 
mm. The intrusion of chloride ions in cracks significantly may reduce the initiation 
period, i.e. the time before the reinforcement starts to corrode. If water entrains in 
arisen cracks, freezing and thawing may lead to increasing crack widths, with possible 
leakage and/or durability problems as consequence, see e.g. Fagerlund (1992 & 1994). 
Therefore, the understanding of the factors influencing the risks of thermal cracking is 
of great importance. Enhanced knowledge about the problem and the affecting pa-
rameters gain the building process and lower the final costs. The main factors affecting 
early age cracking in concrete are temperature and moisture conditions, degree of 
restraint, mechanical properties of the young concrete, and behaviour of adjoining 
structures, see Bernander (1998). In turn, these factors can be influenced already in the 
design phase for instance by choice of mix proportions, of pouring and curing condi-
tions, and of the choice of structural system. 

 With beginning in the earlier part of the last century, see e.g. Carlson (1937), Rein-
ius (1945) and Löfqvist (1946), estimation of the risk of cracking in newly cast concrete 
structures during the heating and cooling phases has been of great concern for engi-
neers. However, it was not until the last decades, that, with the aid of modern com-
puters and laboratory techniques, models for early age cracking risks based on stresses 
and/or strains were developed. Thus, extensive and thorough research and develop-



Restraint Factors and Partial Coefficients 

2 

ment have been performed during the last years at many universities, organisations and 
companies within the field of early age thermal cracking, see e.g. Bernander (1973, 
1982, 1998), ACI (1973, 1990 & 1995), Stoffers (1978), Harrison (1981), Fagerlund 
(1985), JCI (1992), RILEM (1998), Rostásy et al. (2001), CCEAC 2000 (2002). 

 At Luleå University of Technology, Division of Structural Engineering, thermal 
cracking of young concrete is one of the major research areas. This was started early in 
the 1980�s, see Bernander (1982), influenced by work done by Cederwall et al. (1970). 
With Bernander, Cederwall and Elfgren as supervisors, the first academic theses were 
presented by Emborg (1985) and Emborg (1989). Thereafter, a number of licentiate 
and doctoral theses followed: Jonasson (1994), Westman (1995), Ekerfors (1995), Groth 
(1996), Hedlund (1996), Westman (1999), Larson (2000), Nilsson (2000), and Hedlund 
(2000). 

 Rules in different codes as well as a number of different recommendations and 
guidelines concerning cracking in early age concrete aim at: either minimizing widths 
of possible arisen cracks; or avoiding the origin of cracks. The predominant objective in 
the World is to minimize crack widths. In Sweden, the Building Codes for Bridges, 
BRO 2002 (2002) applicable to bridges and similar civil engineering structures, states 
that thermal induced cracking should be avoided. Therefore, the latter direction is the 
focus for the research presented in this thesis. 

1.1 Early age cracking 

During the hydration phase of a concrete structure, the chemical reaction between the 
cement and the water in the concrete generates heat. Due to this heat, young structural 
elements undergo temperature histories similar to what is shown in Figure 1a). During 
the heating phase, the structural elements expand, and later, when the chemical reac-
tion subsides, the heat development decreases and the temperature starts to adjust to the 
surroundings implying in contraction of the young concrete. Meanwhile, the concrete 
matures and its strength increases, see Figure 1b). 

 The volume changes during the hydration phase can be hindered by adjoining 
structures, foundations or by internal parts not undergoing the same volume changes. 
This hindrance induces restraint stresses that may be so large that cracks possibly occur 
if the stresses are larger than the tensile strength of the concrete, see Figure 1b). 
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Figure 1 Example of the a) mean temperature and b) stress and strength development in a 
hardening concrete element with partial restraint and total restraint (100%), respectively. 

 The possible cracking of early age concrete structures can according to Bernander 
(1998) be divided into two groups, namely cracking during the expansion and during 
the contraction phases, respectively of which main features may be described as follows: 

• Cracking during the expansion phase might occure both in the surfaces of elements 
and/or through the structural elements. Surface cracks in the expansion phase are 
induced in newly cast elements due to differences between internal movements 
within the elements. Through cracks in the expansion phase arise in older adjacent 
structural elements due to differences in movements between hydrating newly cast 
elements and the less or not at all hydrating older elements. Expansion phase cracks 
arise shortly after casting, within a few days, and tend to close by time. The influ-
ence by such cracks on the static capacity, the function and durability must be 
judged from case to case. 

• Cracking during the contraction phase are usually in the shape of through cracks in 
newly cast elements. Depending on dimensions, environmental conditions etc. they 
might arise weeks, months and in extreme cases even years after casting. Cracks 
formed during the contraction phase are mostly through and lasting cracks, which 
are induced in the most recently cast elements due to the hindrance of the thermal 
movements from adjacent structural elements. 
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1.2 Crack risk estimations 

The estimation of the risk of cracking of early age concrete structures can be based on 
five consecutive steps, see Figure 2. Firstly, the type of structure, the material propor-
tions and possible measures to avoid cracks have to be chosen. Secondly, the tempera-
ture development has to be determined, either by calculations, diagrams/databases or 
by measurements. Thirdly, the restraint situation has to be determined, that is both the 
boundary and the structural restraint. Fourthly, structural calculation of the stress or 
strain ratios follows, i.e. the maximum tensile stress or strain is compared to the tensile 
strength or the ultimate strain capacity, respectively. Fifthly the crack risk design is 
based on partial coefficients, whose inverse the stress or strain ratios should not exceed. 
See e.g. Emborg & Bernander (1994), RILEM (1998), Rostásy et al. (2001) and 
Emborg et al. (2003) for a more thorough survey on the crack risk estimations. 

 

Martin
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Figure 2 Description of the principal steps in estimations of the risk of cracking in early age 
concrete structures. Nilsson (2000). ξ is the stress or strain ratio and γrγs is the partial coefficient. 

 The first step in Figure 2, choice of structure, material and measures, is the primary base 
of the outcome of estimations of risk of thermal cracking in early age concrete struc-
tures. Properly chosen type of structure and dimensions along with suitable mix design 
of the concrete are the foundation of the avoidance of cracking. In addition, possible 
measures such as cooling of hydrating parts, Bernander (1973 & 1998) and/or heating 
of adjacent older elements, see Wallin et al. (1997), might be required. In earlier days 
provision of movement joints, see e.g. Harrison (1981), and limitation of temperature 
differences within structures by use of low heat generating cement types, see Fagerlund 
(1985), composed commonly used measures. Combinations of several measures are in 
many situations necessary in order to avoid cracking. 
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 The second step in Figure 2 comprises the temperature development during the hydra-
tion phase. It has to be determined either by finite element method calculations, see 
e.g. ConTeSt Pro (2003) and Kanstad et al. (2001), from diagrams/database, see Jonas-
son et al. (2001), from measurements in real structures, see Heimdal et al. (2001a & b), 
or by experiences from earlier cast similar structures. 

 As the third step, the restraint condition has to be determined, including the restraint 
within the studied structure elements, in the interface (joint) between parts of struc-
tures, from adjacent structural members and ground/rock. In Reinius (1945), ACI 
(1973, 1990 & 1995), Stoffers (1978) and Harrison (1981), the degree of restraint in 
base restrained walls is presented. In Emborg et al. (1997), several common cases of 
restraint conditions within structural elements are presented, and in e.g. Larson (1999 & 
2000) the restraint from adjacent structures has been investigated. For determination of 
the degree of boundary restraint from adjacent ground material, several engineering 
models are reported in Rostásy et al. (1998) and (2001). Further, in e.g. Bernander 
(1993) and Nilsson (1998 & 2000) a method is presented for the determination of the 
degree of rotational boundary restraint, and Bernander (2001) also gives a method for 
the translational boundary restraint. 

 The determination of loading/capacity situation, step four in Figure 2, can be done 
by structural calculations e.g. by the finite element method according to ConTeSt Pro 
(2003) or JCI (1992). The loading/capacity situation can also be estimated by means of 
manual methods, see Reinius (1945), Löfquist (1946), Bernander (1982), Bernander & 
Emborg (1994), Emborg & Bernander (1994) and Larson (2000), or with help from 
diagrams/databases, e.g. through Emborg et al. (1997) and Jonasson et al. (2001). 

 Comparing the loading/capacity situation with stated partial coefficients for thermal 
cracking problems forms the final step in the crack risk design. The partial coefficients are 
given in design codes, e.g. BRO2002 (2002). The partial coefficients can be derived by 
probabilistic methods, see e.g. Cornell (1969), AK79/81 (1982), NKB87 (1987), 
Schneider (1997), and especially for thermal cracking problems, see Nilsson (2000) and 
Rostásy and Krauß (2002). 

1.3 Identification of the problem 

Improvement and development of new analyse tools in each of the steps in crack risk 
estimation according to Figure 2 are always important and necessary. The need of fast 
and reliable tools is of utmost importance. 

 One of the main issues is the estimation of the degree of restraint in a structure or a 
structural element, step 3 in Figure 2. Today, estimations are based either on time-
consuming finite element method calculations or on more or less simplified engineer-
ing tools. Especially for the typical-case wall-on-slab, e.g. abutments and tunnel walls, 
the need is evident of faster and sufficiently accurate tools considering e.g. three-
dimensional effects, effects of non-linearly varying strains and possible slip failure at the 
joints between walls and slabs. 
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 The crack risk design of early age concrete structures, step 5 in Figure 2, should be 
based on partial coefficients, or their inverse safety-factors. The partial coefficients 
should be based on scientific basis. Since calculated stresses or strains are based on 
material data, geometric properties etc. that almost all are stochastic variables, the 
calculated stress or strain ratios must, by some probability, be lower than certain values. 
The crack safety values stated in the Swedish building code for bridges, BRO2002 
(2002) are based on experiences and reasonable judgements. Therefore, the need for 
more scientifically determined partial coefficients is both important and necessary. 

1.4 Aim and scope 

The scope of this thesis focuses on the analysis steps 2 and 5 in Figure 2 above. The 
main objective is to simplify and improve crack risk estimations of early age concrete 
structures, by means of the determination of the degree of restraint and the determina-
tion of partial coefficients concerning analyses of cracking in early age concrete. 

The aim of the work 

• is to invent and derive a fast and reliable method for the determination of re-
straint factors affecting early age concrete structural elements, especially for the 
typical case wall-on-slab. 

• is to calculate partial coefficients for thermal cracking of young concrete by use 
of a probabilistic method and to verify and form an opinion of the stated values 
in the Swedish building code for bridges, BRO94 (1999). 

At the time when the work on partial coefficients was performed, the Swedish building 
code for bridges was given in BRO94 (1999), but at present, a newer version, 
BRO2002 (2002), is in use. However, the partial coefficients (named crack safety 
values) stated in both codes are the same. 

 

 

 

 



Outline and Obtained Results 

7 

2 Outline and Obtained Results 

The thesis presented here is bases on four papers, Paper A, B, C and D. The first three 
papers deal with the determination and estimation of restraint factors used in crack risk 
analyses of early age concrete. The fourth and last paper deals with the determination of 
partial coefficients for crack risk estimations. 

2.1 Determination of restraint factors (Paper A, B and C) 

2.1.1 Derivation of a semi-analytical method � Paper A 
The restraint in young concrete structures is one of the most crucial parameters in 
crack risk analyses. Without accurate tools for estimation of the restraint, crack risk 
analyses and design of possible crack-avoiding measures will not be reliable. 

 By the Compensation Plane theory, see e.g. JCI (1992) and Rostásy et al. (1998), a 
fairly simple and accurate semi-analytical model have been derived for the determina-
tion of restraint variations in early age concrete structures built by one young element 
cast on an older one. The model is derived under the assumption of uniformly distrib-
uted elastic thermal deformation and shrinkage in each section. The formulation de-
pends on the geometric properties of the young and the old sections, the modulus of 
elasticity, the boundary restraint (both translational and rotational), a factor taking into 
account possible slip failure in joints and finally on a factor for high wall effects com-
pleted with correction factors dependent on the degree of boundary restraint. 

 Two simple and applicable expressions are further developed from the general 
formulation of the model for the restraint determination in typical-case wall-on-slab. 
The first equation applies to structures in which plane sections remain plane, in which 
no slip failure takes place in the joint between the wall and the slab, and in which the 
boundary restraint is zero. The second equation takes into account possible slip failure 
in the joint between the wall and the slab as well as high wall effects, that is, resilience. 
For cases subjected to some degree of boundary restraint, more sophisticated methods 
are necessary, see below regarding Paper B. 
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 The derived and presented model is a further development of methods for restraint 
determination for totally base restrained walls, see e.g. ACI (1973, 1990 & 1995), 
Stoffers (1978) and Emborg (1989). 

 Paper A is written by Martin Nilsson, Jan-Erik Jonasson, Mats Emborg, Kjell Wallin 
and Lennart Elfgren. Martin Nilsson�s contribution to the paper is the derivation and 
calibration of the model, determination and calculation of the new adjustment tools 
and finally writing the paper and drawing all the figures. 

2.1.2 Verification and calibration of the semi-analytical method � Paper B 
The special formulations of the semi-analytical model for wall-on-slab structures are 
not applicable without verification and calibration to some reference restraint varia-
tions. Therefore, the wall-on-slab formulation is calibrated and adjusted by use of 2920 
elastic three-dimensional finite element method calculations. Necessary adjustment 
tools are determined and presented in order to achieve good correlation with the FEM 
calculations. The adjustment tools consist of the effective width of slab, effects of 
relative location of walls on slabs, high wall effects - resilience, effects of possible slip 
failure in joints, the degree of boundary restraint, and, finally, on basic resilience 
corrections factors for boundary restraint. 

 The calculation of restraint variations by the semi-analytical method is both simple 
and fast. By adjustments to the FEM calculations, the method gives reasonable accurate 
results for practically all cases that usually need analyses. 

 For the case of no boundary restraint, any wall-on-slab structure is fast and easily 
calculated by the semi-analytical method. This case covers the very most of the 
interesting ones in practical applications. For structures subjected to some degree of 
boundary restraint, the application of the concept of basic resilience correction factors 
works properly for length to height ratios larger than a certain, easy to calculate limit. 
For shorter structures subjected to some degree of boundary restraint the method does 
not work properly. However, such structures are rare, in the reality. Anyway, shorter 
structures might be regarded, on the safe side, as if the limit situation is fulfilled. This 
situation will be analysed more thoroughly in the future. 

 Paper B is written by Martin Nilsson, Jan-Erik Jonasson, Mats Emborg, Kjell Wallin 
and Lennart Elfgren. Martin Nilsson�s contribution to the paper is the derivation and 
calibration of the model and determination and calculation of the new adjustment tools 
and finally writing the paper and drawing all the figures. 

2.1.3 Restraint coefficients in thermal stress analysis � Paper C 
For a full-scale field casting, see Heimdal et al. (2001a & b), the restraint and thermal 
stress development have been determined by means of evaluating measured strains and 
temperatures from a field-test. By use of simple elastic and more realistic viscoelastic 
material approaches in the thermal stress models used, respectively, the early age stresses 
of the structure is estimated theoretically and compared. 
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 It is thus shown that the complex structural restraint behaviour can be described by 
means of restraint coefficients giving an agreeing thermal stress development compared 
to both more exact finite element method calculations and measured stresses in a full-
scale structure. The restraint coefficients are in the stress calculation applied as a direct 
reduction of the fixation stress during both expansion and contraction phase of a hard-
ening concrete structural element. 

 Paper C is written by Mårten Larson, Martin Nilsson and Jan-Erik Jonasson. Martin 
Nilsson�s contribution to the paper is calculation of the restraint coefficients by the 
semi-analytical method and in that context writing the belonging text and drawing 
some of the figures. 

2.2 Determination of partial coefficients 

2.2.1 Determination of partial coefficients by a probabilistic method � Paper D 
The risk of thermal cracking in young concrete structures is commonly estimated as the 
ratio between the calculated maximum tensile stress and the actual tensile strength. 
Alternatively, the ratio between the calculated maximum tensile strain and the actual 
tensile strain capacity is used. If a determined ratio is smaller than certain values, a 
structure is assumed to fulfil the requirements for avoiding thermal cracking. 

 Depending on the effects of cracking and the accuracy in determining material 
properties the Swedish building codes for bridges, BRO94 (1999), states different 
values of the risk of cracking. 

 Partial coefficients for cracking problems in early age concrete have been deter-
mined by a probabilistic method and compared to the values in BRO94 (1999). The 
values calculated by the probabilistic method coincide well with the values stated in the 
BRO94 (1999). However, the values obtained are based on many assumptions and 
simplifications and they shall not be seen as the final proposal. Additional judgements, 
research and calculations are needed. 

 Paper D is written by Martin Nilsson and Lennart Elfgren. Martin Nilsson�s contri-
bution to the paper is the modelling including finding necessary input and calculation 
of all partial coefficients and finally writing the paper and drawing all the figures. 
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3 Suggestions for Future Research 

3.1 The semi-analytical method for restraint 

The method presented is adjusted and calibrated to elastic 3D FEM calculations. How-
ever, the method should be compared to more real restraint variations determined from 
full-scale tests and/or reliable FEM calculations using the models for hydrating con-
crete, by means of viscoelastic behaviour, maturing etc. 

 The derived semi-analytical method has a limit in application not being able to be 
used for short structures for non-zero boundary restraint situations. Therefore, there is a 
need for future development of a method covering this area. 

 The models suggested for determination of the adjustment tools can always be 
improved by better models or by increasing the data behind the models. 

 An area that certainly needs theoretical and experimental research is foundation of 
concrete structures on rock. Important task is how the boundary restraint should be 
regarded and how interlocking and fracture zone in rock does influence the restraint in 
newly cast concrete elements. 

3.2 Partial coefficients 

The calculated partial coefficients for thermal cracking problems determined by the 
probabilistic method are based on many assumptions and simplifications. Data regarding 
the coefficient of variation for e.g. the concrete strength, the accuracy in the methods 
estimating the thermal stresses etc. should be more thoroughly investigated. Further, 
the determination does not include all possible parameters affecting the risk of cracking. 
However, the more parameters that are included in the model, the more complicated 
expressions will be the result. 
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ABSTRACT 

The restraint situation in early age concrete structures is one of the crucial factors in 
thermal crack analyses at early ages. Therefore, the accuracy in the determination of the 
restraint is of utmost importance. A semi-analytical method has been derived for the 
determination of the restraint variation in early age concrete structures. The method is 
derived using the Compensation Plane method according to the linear elastic theory. 
The model depends on the geometry of the structure, the Young�s modulus of the 
structural elements, the boundary restraint situation, and the location of the newly cast 
concrete element on the old element. The model is further developed for the typical 
case wall on slab. Straightforward and simple expressions are derived for the restraint 
variation in the wall. In the model, effects of high walls are regarded in form of defor-
mations in the wall when its base is completely restrained. The model is further sup-
plemented with effects of possible slip failure at the joint between the young and the 
old concrete. The concept of effective width of the slab is introduced in the method as 
the only model parameter for correlation with about 3000 3D elastic FEM calculations. 
The decisive point for maximum tensile stresses, and at where the restraint should be 
determined, is briefly described and discussed. 

 This paper forms the first part of two papers presenting and describing the semi-
analytical method for restraint determination. This part, Paper 1, deals with the deriva-
tion and general descriptions of the method. In the second part, Paper 2 by Nilsson et 
al. (2003), the method is firstly verified and adjusted to the FEM calculations and sec-
ondly its application and necessary adjustment tools are determined and presented. 

Keywords: restraint; early age concrete; mass concrete; cracking; resilience; joint slip; 
wall on slab. 

1 INTRODUCTION 

It is well known for contractors that due to volume changes in concrete structures large 
stresses can arise if the movements of the structures are restrained. These restraint 
stresses can be so large that they may cause extensive cracking, which give rise to ex-
pensive repair and reduce both the durability and the function of the structures. There-
fore, today hardly any contractors overlook the effects of these early age stresses. Still, 
and too often, newly cast concrete structures crack at many building sites. 

 Large resources are put into modern building to predict the restraint stresses and the 
risk of cracking, and to design appropriate counter-measures to avoid possible cracking. 
The measures, including safety limits, should be designed in the early production-
planning phase. However, if the conditions are changed for the actual casting, e.g. the 
air and/or the concrete temperatures change, a new crack risk analysis is needed. Nev-
ertheless, there is a need of fast and reliable tools to realize the analyses, especially if the 
conditions are changed very late in the building process. Unfortunately, sometimes the 
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analysis tools and/or models are too simplified, which introduce uncertainties in the 
results, an on the opposite, the tools can also be too complicated and time consuming. 

 As been indicated, one important part of every tool is to predict the degree of re-
straint and, consequently, the restraint calculation should neither be too simplified nor 
too complicated. In this paper an elastic and fairly simple model is presented for the de-
termination of the restraint in newly cast concrete structural elements on existing ones 
and especially for the typical case wall on slab. 

1.1 Early age cracking 

During the hydration phase of a concrete structure, the chemical reaction between the 
cement and the water in the concrete generates heat. Due to this heat, young structural 
elements undergo temperature histories similar to what is shown in Figure 1a). During 
the heating phase, the structural elements expand and later when the chemical reaction 
subsides, the concrete starts to contract when the heat development decreases and the 
temperature starts to adjust to the surroundings. Meanwhile the concrete matures and 
its strength increases, see Figure 1b). In addition, for high performance concretes (low 
water-to-cement ratios) significant autogenous shrinkage is present in the same time as 
the thermal movements take place. 

 The volume changes during the hydration phase can be hindered by adjoining 
structures, foundations or by internal parts not undergoing the same volume changes. 
This hindrance induces restraint stresses that may be so large that cracks possibly occur 
if the stresses are larger than the tensile strength of the concrete, see Figure 1b). 
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Figure 1 Example of the a) mean temperature and b) stress and strength development in a 
hardening concrete element restrained at partial and totally (100 % degree). 
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 The possible cracking of early age concrete structures can be divided into two 
groups, namely cracking during the expansion and during the contraction phases, 
respectively. 

• Cracking during the expansion phase might happen both in the surface and/or 
through the structural elements. Surface cracks in the expansion phase are induced 
in newly cast elements due to differences between the internal movements within 
the elements, and through cracks expansion phase can be found in adjacent struc-
tural elements due to the difference in movements between the different elements. 
Expansion phase cracks arise shortly after casting, within a few days, and tend to 
close by time. The influence by such cracks on the static capacity, the function and 
durability most be judged from case to case. 

• Cracking during the contraction phase are usually in the shape of through cracks in 
newly cast elements. Depending on dimensions, environmental conditions etc. they 
might arise weeks, months and in extreme cases even years after casting. Cracks 
formed during the contraction phase are mostly through and lasting cracks, which 
are induced in the most recently cast elements due to the hindrance of the thermal 
movements from adjacent structural elements. 

1.2 Crack risk estimations 

The estimation of the risk of cracking of early age concrete structures can be based on 
five steps, see Figure 2. Firstly, the type of structure, the material proportions and pos-
sible measures to avoid cracks have to be chosen. Secondly, the temperature develop-
ment has to be determined, either by calculations, diagrams/databases or by measure-
ments. Thirdly, the restraint situation has to be determined, that is both the boundary 
and the structural restraint. Fourthly, structural calculation of the stress or strain ratios 
follows, i.e. the maximum tensile stress or strain is compared to the tensile strength or 
the ultimate strain capacity, respectively. Fifthly the crack risk design is based on so-
called crack safety factors, the partial coefficients, which the stress or strain ratios should 
not exceed. Recommendations and guidelines regarding this whole process can be 
found in e.g. Emborg & Bernander (1994a) and Emborg et al. (2003). 
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Figure 2 Description of the principal steps in estimations of the risk of cracking in early age 
concrete structures. Nilsson (2000). 

 The first step in Figure 2, choice of structure, material and measures, is the primary base 
of the estimation of risk of thermal cracking in early age concrete structures. Properly 
chosen type of structure and dimensions along with suitable mix design of the concrete 
is the foundation of the avoidance of cracking. In addition, possible measures such as 
cooling of hydrating parts, Bernander (1973 & 1998) and/or heating of adjacent older 
parts, e.g. see Wallin et al. (1997), might be required. The second step in Figure 2 
comprises the temperature development during the hydration phase. It has to be deter-
mined either by calculations, see e.g. Jonasson et al. (1994) and ConTeSt Pro (2003), 
from diagrams/database, see Jonasson et al. (2001), or from measurements in real struc-
tures. From the temperature development, the stress and strength growth are obtained. 
As the third step, the restraint condition has to be determined, including the restraint 
within the studied structure, in the interface (joint) between parts of structures, from 
adjacent structural members and ground/rock. In Emborg et al. (1997), several com-
mon cases of internal restraint situations are presented, and in e.g. Larson (1999 & 
2000) the restraint from adjacent structures has been investigated. In Rostásy et al. 
(2001) several engineering models are reported for the assessment of boundary restraint 
in the phases of pre-design and design and execution. For the rotational bending re-
straint from adjacent ground materials, e.g. in Bernander (1993) and Nilsson (1998 & 
2000), methods for the determination of the boundary restraint coefficient are given. 
The determination of the stress/strength or strain/ultimate-strain situation, step four in 
Figure 2, can be done by structural calculations, e.g. with ConTeSt Pro (2003) or JCI 
(1992), by manual methods, see Löfquist (1946), Bernander (1982), Bernander & Em-
borg (1994), Emborg & Bernander (1994b) and Larson (2000), or with help from dia-
grams/databases, e.g. through Emborg et al. (1997). Comparing the stress/strength or 
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strain/ultimate-strain situations with stated partial coefficients for thermal cracking 
problems forms the final step in the crack risk design. The partial coefficients - or crack 
safety factors - are given in design codes, e.g. BRO 2002 (2002). The partial coeffi-
cients can be derived by probabilistic methods, see Nilsson (2000) and Nilsson & Elf-
gren (2003). 

 Below, a semi-analytical elastic model will be presented for the determination of the 
restraint in early age concrete walls cast on older slabs (step 3 in Figure 2). The model 
is derived using the Compensation Plane theory, see JCI (1992) and Rostásy et al. 
(1998), meaning plane sections remain plane after deformation in the structural analysis. 
The model is supplemented with the effects of high walls and the effects of possible slip 
failure in the joint between the young and the old concrete. In this paper only the 
derivation of the model will be presented as well as general descriptions of the parts in-
cluded in the model. In the second paper, Paper 2 by Nilsson et al. (2003), the model is 
fitted to about 3000 three-dimensional elastic FEM calculations, deeper descriptions are 
given, and models and engineering tools for each part in the model are introduced and 
discussed. The approach presented in this paper is a modelling with respect to the ef-
fects of high walls as only the deformations in the wall are taken into consideration as 
in ACI (1973, 1990 & 1995), Stoffers (1978) and Emborg (1989). 

2 THE SEMI-ANALYTICAL METHOD 

As been described and visualised in Figure 2, one of the crucial factors in the estimation 
of the risk of early age cracking is the determination of the degree of restraint affecting 
a concrete structure. The restraint can be described as the hindrance of the free move-
ments of young concrete structural elements or parts of elements during the hydration 
phase. If such elements or parts of elements are totally free to deform, when they are 
exposed to thermal induced movements and/or shrinkage, no restraint stresses will 
arise. On the opposite, if newly cast structural elements or parts of elements are hin-
dered to move by adjacent sections or stiff foundation materials, different degrees of re-
straint stresses arise. E.g. in tunnel walls concreted on foundations and in walls on 
foundation slabs restraint stresses arise. The degree of restraint can be determined in dif-
ferent ways: e.g. by field measuring of actual strains in real structures and comparing 
them to the strain at total fixation, see Heimdal et al. (2001a & b) and Larson et al. 
(2003). It can also be determined by finite element method calculations, see e.g. JCI 
(1992) and Kanstad et al. (2001), or other more or less sophisticated theoretical models. 

 Below, a semi-analytical method will be presented that can be used as a fairly simple 
engineering tool adaptable in many situations. The model is presented both as a general 
formulation and as an applicable approach for the typical case wall on slab. 

 Generally, the restraint in a young concrete structural part, γR, can be defined as the 
quota between the principal stress at the studied time, σ1, and the stress, σ0, at total 
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fixation (ε ≡ 0) by volume changes in the young concrete (shrinkage and thermal 
strains): 

 1
0R

σγ =
σ

 (1) 

 Based on Eq. (1) with the use of the Compensation Plane theory, see Appendix A, 
the degree of restraint in the length direction of a structure can be expressed as 

 t ry yz
R res slip R R Rγ = δ δ − γ − γ − γ  (2) 

where 

δres = high wall effect, resilience, [-] 
δslip = slip in joint effect, [-] 
γR

t = translational restraint part, [-] 
γR

ry = rotational restraint part for rotation around the y-axis (the vertical axis), [-] 
γR

rz = rotational restraint part for rotation around the z-axis (the horizontal, 
transverse axis), [-] 

 Restraint determined by the semi-analytical model in Eq. (2) depends partly on ef-
fects of high walls in which the strains in the young parts do not vary linearly, partly on 
possible slip failure in the joint between the young and the old concrete, partly on 
three restraint parts, γR

t, γR
ry and γR

rz, determined by the geometric properties of the 
structures as well as the boundary restraint situation from the adjacent foundation mate-
rial. The first part of Eq. (2), δresδslip, forms the semi part of the method due to non-
linear behaviour in high-wall structures, see below and Nilsson et al. (2003). The sec-
ond part, -γR

t-γR
ry-γR

rz, forms the analytical part based on the Compensation Plane 
theory. The method includes adaptation to about 3000 3D elastic FEM calculations 
presented in Nilsson et al. (2003), 

2.1 General formulation 

A general expression is derived for the determination of the restraint variation in an 
early age concrete part cast on an older one, see also Appendix A. The derivation is 
based on the Compensation Plane theory (compare beam analysis) and uses an ap-
proach for pre-stressed concrete beams, see Collins & Mitchell (1991). Under assump-
tion of uniform and elastic contraction in the whole young element and in the older 
element, respectively, the restraint variation can be described by 
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 (3) 

where 

NRI = compression force giving zero translational strain in the young concrete, 
[N] 

∆ε0
c = strain of applied volume changes in the young concrete (shrinkage and 

temperature induced strain), [-] 
ζEc28 = modulus of elasticity of the young concrete at the studied time, [N/m2] 
Atrans = transformed area of the cross section, [m2] 
MRI,y = internal bending moment around the y-axis for obtaining zero curvature 

in the xz-plane of the young concrete, [Nm] 
MRI,z = internal bending moment around the z-axis for obtaining zero curvature 

in the xy-plane of the young concrete, [Nm] 
ycen = vertical location of the centroid of the transformed section relatively the 

joint, [m] 
y = vertical co-ordinate from the joint and up-wards, [m] 
zcen = horizontal location of the centroid of the transformed section relatively 

the centre of the slab, [m] 
z = horizontal co-ordinate from the centre of the slab, [m] 
Itrans,y = transformed second moment of inertia of the cross section for bending 

around the y-axis, [m4] 
Itrans,z = transformed second moment of inertia of the cross section for bending 

around the z-axis, [m4] 
γRT = translational boundary restraint, [-] 
γRR,y = rotational boundary restraint for bending around the y-axis, [-] 
γRR,z = rotational boundary restraint for bending around the z-axis, [-] 

 Note that this formulation is quite similar to the well-known Navier�s formula for 
beam analyses. 

 The modulus of elasticity of the young concrete is expressed as a factor ζ times the 
28-days value of the elasticity. This factor is introduced in order to take into account 
that most often cracking of young concrete (through cracks in the cooling phase) takes 
place fairly late in the hydration process but, for ordinary sized structures, not as late as 
at 28 days of maturity. In Larson (2000) a small study of the factor ζ was presented giv-
ing that ζ = 0.93 is a good estimation of the somewhat lower stiffness of the young 
concrete during the contraction phase. 
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For simplicity at application, Eq. (3) is transformed to, see Appendix A, 
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 (4) 

where 

Ac = cross-section area of the young concrete, [m2] 
Ea28 = 28 days modulus of elasticity of the adjacent older concrete, [N/m2] 
λ = factor describing the volume change in the old concrete relatively the vol-

ume change in the young concrete, λ = ∆εa
0/∆εc

0, [-] 

Aa,eff = effective cross-section area of the adjacent older concrete, [m2] (se sub-
section 2.6 and Paper 2 by Nilsson et al. (2003) for the meaning of the 
term effective) 

y� = internal vertical lever arm to the total centroid for each part, [m] 

 As can be seen in Eqs. (3) and (4), the restraint variation depends on the cross-
section areas of the structure, the geometric properties of the young part (high wall ef-
fects meaning non-linearly varying strain), possible slip failure in the joint between the 
young and the old parts, the modulus of elasticity of the young and the older concrete, 
and the translational and rotational boundary restraint situation from the foundation 
material, see Figure 3 for a brief description. 
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Figure 3 Brief description of the including parts in the model for determination of the restraint 
variation. 

2.2 Effects of high walls 

In not all early age concrete structures, the strains over the height of the young parts 
vary linearly during the deformation. In structures with low length to height ratios the 
strains vary non-linearly, which here is defined as effects of high walls. This means that 
plane sections do not remain plane under deformation and that a simple application of 
the Compensation Plane theory does not hold properly. In order to take into account 
the non-linearity so-called resilience functions can be used for the determination of the 
strain variations and thereby the restraint. The resilience is here based on a basic resil-
ience factor that applies for fully base restrained walls, that is γRT = γRR,z = 1. The 
rotational boundary restraint for rotation around the vertical y-axis is without any 
further investigations in this model considered being zero, γRR,y = 0. For other base 
restraint situations than γRT = γRR,z = 1, resilience correction factors are used, see sub-
section 2.2.2. Basic resilience factors for fully base restrained walls have previously been 
presented in e.g. ACI (1973), Figure 4a), and Emborg (1989), Figure 4b). 

The resilience factor is here determined as 

 0
res res transl rotδ = δ δ δ  (5) 

where 

δ0
res = basic resilience factor, [-] 

δtransl = resilience correction factor for translational boundary restraint, [-] 
δrot = resilience correction factor for rotational boundary restraint, [-] 

2.2.1 Basic resilience factors 
High wall effects, basic resilience, referrer to structures with low length to height ratio 
and that are totally restrained at the base. In accordance with the presentation in Figure 
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4, the basic resilience is applicable for structures with length to height ratio smaller than 
e.g. about ten, L/Hc < 10, in Figure 4a), or about seven, L/Hc < 7, in Figure 4b). 
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Figure 4 Basic resilience factor δ0
res at different distance from the base as function of the length to 

height ratio. Modified from a) ACI (1973) and b) Emborg (1989). 

 The basic resilience curves in Figure 4a) originate from test data according to ACI 
(1973) whereas the curves in Figure 4b) where determined by elastic two-dimensional 
FEM calculations. The curves for L/Hc > 2 in Figure 4a) suggest �more� resilience 
than the curves in Figure 4b), which means that by using the basic resilience curves ac-
cording to Figure 4b), higher restraint values will be obtained and thereby higher crack 
risks than by the curves in Figure 4a). Probably this is an effect of that the ACI-curves 
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are partly based on measurements, while the curves according to Emborg (1989) are 
calculated with a theoretically completely restrained wall base. For the moment the ex-
act background for the ACI-curves has not been able to study thoroughly. 

 Since an analytical way of describing the resilience functions is needed here together 
with a more wide range of the length to height ratios L/Hc (<1 and >7, respectively), 
the curves from Emborg (1989) are here used as a base and are completed with more 
FEM calculations. Then all resulting curves are fitted to a polynomial function ex-
pressed as, see Paper 2 by Nilsson et al. (2003), 

 
n

0

0

i

res i
ci

y
a

H=

 δ =  
 

∑  (6) 

2.2.2 Resilience correction factors 
The resilience correction factors are introduced, as been indicated above in Eq. (5), for 
cases in which the boundary restraint is not total. They are determined as 

 
( )

( )
0

0
,,

1

1
transl RT RT transl

RR zrot RR z rot

δ = γ + − γ δ

− γδ = γ + δ
 (7) 

where δ0
transl and δ0

rot are basic resilience correction factors for translation and rotation, 
respectively. See Paper 2 by Nilsson et al. (2003) for more details on the determination 
of the basic correction factors. Eq. (7) in Eq. (5) gives 

 ( )( ) ( )( )0 00
,, 11 RR zres res RR z rotRT RT transl − γδ = δ γ + δγ + − γ δ  (8) 

 For case of free translation and free rotation, that is no boundary restraint γRT = 
γRR,z = 0, Eq. (8) becomes 

 0 0 0
res res transl rotδ = δ δ δ  (9) 

 For no boundary restraint the 3D effect is considered only by introducing an effec-
tive width of the slab, Ba,eff, which means that formally δ0

translδ
0
rot ≡ 1 in this case. So, 

the basic resilience correction factor for rotation is determined as the inverse of the ba-
sic resilience correction factor for translation by 

 0
0

1
rot

transl

δ =
δ

 (10) 
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 This relation is used in the determination of the basic correction factor for bending, 
see Nilsson et al. (2003). 

 In Figure 5 the principles of the resilience correction factors are presented. The fig-
ure is drawn for a point above the joint in a structure where δ0

transl < 1 and conse-
quently δ0

rot > 1, see Eq. (10). In another point of the structure the opposite situation 
might occur, i.e. δ0

transl > 1 and δ0
rot < 1. For γRT = 0 free translation prevails, and γRT 

= 1 means no translation, and for γRR,z = 0 a structure is free to rotate and for γRR,z = 
1 no rotation prevails. When γRT = 0 and γRR,z = 1 structures are subjected to pure 
translation, and the opposite, for γRT = 1 and γRR,z = 0 only pure rotation is possible. 
For other values of γRT and γRR,z the resilience correction factors are determined ac-
cording to the lines between free and no translation and free and no rotation, respec-
tively. 

 FEM calculations are used, see Paper 2 by Nilsson et al. (2003), for evaluation of the 
points at γRR,z = 0 and γRR,z = 1 at free translation (γRT = 0) yielding the resilience 
correction factor δ0

transl (left part of Figure 5). With the prerequisite that δ0
translδ

0
rot ≡ 1 

the corresponding value of δ0
rot is obtained (the point where γRT = γRR,z = 0 in the 

right part of Figure 5). Interpolation along the lines is then possible which saves enor-
mous amounts of calculations when establishing the model of resilience correction fac-
tors. 
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Figure 5 Model description of resilience correction factors dependent on the boundary restraint 
situation. 
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 For symmetrical structures (no rotation around the y-axis) subjected to total base re-
straint, γRT = γRR,z = 1, no correction is needed and the restraint is determined only by 
the basic resilience factor according to, Eqs. (4) and (8) with γRT = γRR,z = 1, 

 0
R res slipγ = δ δ  (11) 

which also is shown in Figure 5 in the corners of the cubes where γRT = γRR,z = δtransl 
= 1 and γRT = γRR,z = δrot = 1. 

2.3 Effects of slip failure in joints 

The restraint situation and thereby the cracking risk during the cooling phase of the 
young concrete depends to a large extent on the connecting joints between the young 
and the old parts. In Figure 6, the stress distribution before and after a possible slip fail-
ure in the joint is briefly described in a wall on a slab during the cooling phase. If a 
joint is very strong and contains a large amount of through reinforcement it is capable 
to transfer large restraining forces from the older part, Figure 6a), implying high hori-
zontal stresses in the mid-section of the structure as well as high vertical and shear 
stresses at the ends of the joint. On the opposite, see Figure 6b), if the joint is weaker 
and does not contain much trough reinforcement, slip failure is possible and thereby 
the stresses in the mid-section and in the ends of the joint are reduced and conse-
quently the risk of cracking. In longer structures, effects of possible slip failure in joints 
are not as obvious as in shorter structures since the middle parts of such structures do 
not respond to stress changes at the ends of the joints. 

 Due to the difficulty in knowing whether a joint will crack or not, decisions regard-
ing possible measures as cooling of walls and heating of slabs will be quite uncertain. 
However, if a slip failure in a joint is predictable, a considerable amount of money can 
be saved. A predicted slip failure in a joint can be regarded as a controlled form of 
cracking and thereby a kind of measure, which is preferable compared to un-controlled 
cracking somewhere else in the young concrete. The usage of joint sealers and injec-
tion hoses in the joints are fairly simple measures to avoid leakage through any cracked 
joint. 

 Today the knowledge about the behaviour of the joints between young and older 
parts is limited. It is hard to determine how large forces that are transferred across a 
joint and to determine if any slip failure will occur. However, in Nilsson et al. (1999) 
and Nilsson (2000) three medium-scale tests of wall on slab cases are presented where 
slip failures where detected. It was found that failures start at the ends of the joints and 
progress in small steps towards the centre of the walls. The steps correspond to the dis-
tance between the reinforcement going through the joint from the slab to the wall. 
Further, in Bernander (2001) it is shown by basic classic theory of elasticity that for the 
typical case wall on slab for reasonable structure lengths the occurrence of slip failure in 
the joint is possible and probable. 
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Figure 6 Principal description of the stresses in a structure a) before and b) after a possible slip 
failure in a joint. Nilsson (2000). By possible slip failure in the joint the horizontal stresses in 
the mid-section are reduced as well as the vertical and shear stresses in the end of the joint. 

 The effects of possible slip failure in joints are regarded by the slip failure factor δslip. 
This factor are smaller than 1 and therefore reduces the restraint values, see Eq. (4). For 
more details about values of the slip failure factor, see Nilsson et al. (2003) and Con-
TeSt Pro (2003). 

2.4 Applicable expressions 

The model presented above in Eq. (4) is general and applies to any structure with a 
younger structural element cast on an older. For the case of a rectangular wall cast on a 
rectangular slab, simple, straightforward and sufficiently accurate semi-analytical expres-
sion can be derived, see Appendix A. 

 A simpler application of the semi-analytical model is derived if no volume change 
takes place in the slab, if slip failure in the joint is negligible, if plane sections remain 
plane (no effects of high walls), and if no translational nor rotational boundary restraint 
is present, γRT = γRR,x = γRR,y = 0. Then the expression for the determination of the 
restraint variation is changed from a semi-analytical expression to an analytical expres-
sion. That is, it is simplified to an expression exactly fulfilling the Compensation Plane 
method according to the linear elastic theory along the centre of the wall. The expres-
sion reads 
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 (12) 

where 

Hc = height of wall, [m] 
Ha = height of slab, [m] 
Bc = width of wall, [m] 
Ba,eff = effective width of slab, [m] 

 ω is a coefficient describing the location of the wall on the slab in the z-direction. If 
ω = 0, the wall is located in the middle of the slab, if ω = ±1, the wall is located at one 
of the sides of the slab, and for other values of ω the wall is located somewhere be-
tween the middle and the sides of the slab, see Figure A.9. ω is determined as 

 
2

a c

u

B B
ω =

−
 (13) 

where u is the real horizontal distance in the z-direction between the centre of the slab 
and the centre of the wall, [m]. 

 Another situation, somewhat more complicated compared to above, is present 
when slip failure in the joint is possible and if sections do not remain plane under de-
formation (high wall effects), then the restraint in the wall is determined as, see Appen-
dix A, 
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 A more comprehensive application formulation of the semi-analytical model is 
found if the boundary restraint may vary. In such cases, the resilience factor has to be 
determined according to Eq. (8) with the resilience correction factors. These factors 
can be determined from elastic FEM calculations with a method presented in Paper 2, 
see Nilsson et al. (2003). The determination of the resilience correction factors in its 
formulation is quite simple but due to mathematical/numerical reasons, limitations in 
the modelling arise. 

2.5 Boundary restraint 

As been introduced earlier, the boundary restraint is divided into one translational part 
and two rotational parts. The foundation material adjacent to deforming early age con-
crete structures restrains the free movements of the structures. Depending on the type 
of foundation material, the degree of compaction, different modulus of the subgrade 
and the geometry of the body resting on the ground etc., the boundary restraint varies.  

 The free translation of a structure is counteracted by the friction and/or cohesion 
properties of the foundation material. A low friction and/or low-cohesive foundation 
material gives almost no resistance to the free translation, which means that the transla-
tional boundary restraint is almost zero, γRT ≈ 0. 

 The bending moment during the cooling phase tends to rotate the ends of structures 
upward and the centre parts downward. The stiffness of the foundation material pre-
scribes how much a structure may bend down into the ground. A soft material offers 
almost no resistance to the free deformation of the structure, implying non or very little 
rotational bending restraint, γRR,z ≈ 0. On the contrary, a structure that is founded on a 
stiff ground, for example rock or dense gravel, can hardly bend at all, that is, the rota-
tional boundary restraint is about 100 percent, γRR,z ≈ 1. If the stiffness of the founda-
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tion material is high and/or the structure is relatively long, the structure rotates anyhow 
but lifts at its ends and rests on the ground only at intermediate parts of the structure. 
This lifting of the ends is hindered by the dead weight of the structure, see Nilsson 
(2000). 

 For structures founded on blasted rock, the restraint situation is much more com-
plex. Interlocking between the concrete and the rock and influence from existing crack 
zones in the rock, determination of the degree of restraint is complicated. However, 
preliminary studies of the restraint from rock are given in Olofsson et al. (2001). 

 The axial force γRTNRI and the bending moments γRR,yMRI,y and γRR,zMRI,z in Eq. 
(3) are caused by the restraint/counteraction from adjacent older concrete members 
and/or more or less elastic foundations on the free movements of young concrete 
structures. The amount of translation and/or rotation depends partly on the length of 
the structures, partly on the friction and/or cohesion properties and stiffness of the 
foundation material. Methods for determination of the amount of boundary restraint 
can be found in Pettersson (1998), Rostásy et al. (2001) and Bernander (2001) and for 
the rotational boundary restraint an elastic approach can be found in Bernander (1993) 
and Nilsson (2000), see also Nilsson et al. (2003). 

2.6 Effective width of slab 

For a relatively thin and low wall cast on a very wide slab, it is obvious that not the 
whole width of the slab influences the movements of the wall. In such cases, only a 
certain part of the slab � here defined as the effective width � is active and should be 
used in the determination of the restraint in the assumed model. In Nilsson (2000), a 
small study on the effective width was presented. It was found in some examples ana-
lysed by FEM that in order to obtain the same curvature at the bottom of the wall, the 
width of the slab used in the semi-analytical model had to be different than the real 
widths. 

 In the recently finished Brite-Euram Project IPACS (Improved Production of Ad-
vanced Concrete Structures), about 3000 elastic FEM calculations of the restraint varia-
tion in rectangular walls on slabs were performed, see Nilsson (2003). Within the pre-
sent work, the results from these calculations have been used to determine the effective 
width of the slabs that is needed in the semi-analytical model, Eq. (4), in order to ob-
tain the same restraint variation as in the FEM calculations. Furthermore, from these 
results a method for the determination of the effective width is developed for geomet-
ric properties different from the ones used in the FEM calculations, see Paper 2 by 
Nilsson et al. (2003). 

2.7 Decisive point 

The cracking risk has of cause to be estimated at the point in a structure where the ori-
gin of a crack is most probable. In elastic analyses of wall on slab cases, the highest val-
ues of the restraint are located at the bottom of the wall. However, this is not the loca-
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tion of the most critical point in real structures. In a wall on slab structure, the heat 
condition is non-uniformly distributed over the height the wall, that is, the heat is 
lower at the top and bottom of the wall than in the middle. Therefore, the decisive 
point is not located at the bottom of the wall where some cooling from the slab is pre-
sent. Hence, the most critical point is located somewhere above the joint, but the loca-
tion varies from case to case. In many cases one wall thickness above the joint is a good 
estimation of the location of the decisive point for a crack risk analysis, see Olofsson et 
al. (2001) and Figure 7. 

 

T

&

γR

⇒ 

σ 

Decisive 
point Bc 

B
c 

Temperature Restraint Loading 

 

Figure 7 Principle description of location of desicive point. 

3 EXAMPLE 

By use of the two simple and applicable expressions presented above, Eqs. (12) and (14)
, the restraint variation in the wall in Figure 8a) has been calculated and compared. 
Firstly, in the calculations the effective width of the slab is given the real value of the 
slab, Figure 8b). Secondly, the effective width in Eqs. (12) and (14) are given values 
according to the methodology presented in Nilsson et al. (2003), see Figure 8c) and d). 
The calculation with Eq. (12) does not depend on the length of the structure (Com-
pensation Plane theory), which gives linearly varying restraint, Figure 8b) and d). 

 By Eq. (14) the length is an important parameter due to the high wall effects. The 
resilience factor depends on the length to height ratio, see Figure 4, in which it can be 
seen that with smaller length to height ratio the restraint varies more non-linearly. Fur-
ther, the effective width of the slab also depends on the length of the structure, see Pa-
per 2 by Nilsson et al. (2003). 

 In the diagrams of Figure 8 the final restraint variations determined by Eq. (14) for 
the different structural lengths are shown as well as the linear variation determined by 
Eq. (12). With increasing length, the restraint determined by Eq. (14) turns more and 
more into linear variation when the high wall effect subsides. Further, a comparison 
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between restraint determinations by the semi-analytical method presented in this paper 
and by evaluations of field measurements on a full-scale structure is presented in Larson 
et al. (2003). 
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Figure 8 Geometric properties and calculated restraint variations of wall on slab structure analysed 
in an example. Geometry from Kanstad et al. (2001). 

 At one wall thickness above the joint, in this paper the default location of the deci-
sive point, the restraint is found, Figure 8b), to be 0.51 for the linear variation by Eq. 
(12) and 0.51, 0.54 and 0.54 for L = 10, 15 and 25 m by Eq. (14) with Ba,eff = Ba, re-
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spectively. By use of the effective width of slab, see paper 2 by Nilsson et al. (2003), 
the restraint values are found to be lower in this example. If high wall effects are in-
cluded the differences by using the effective width are not so large, 4�6 %, but with no 
high wall effects the differences increase to 16, 8 and 4 % for L = 10, 15 and 25 m, re-
spectively. Further, if the decisive point is located higher in the wall the difference will 
be larger, especially for shorter structures or for structures with higher walls. 

4 SUMMARY AND CONCLUSIONS 

The restraint in young concrete structures is one of the most crucial parameters in 
crack risk analyses. Without any accurate tools for estimation of the restraint, crack risk 
analyses and design of possible crack-avoiding measures will not be reliable. 

 By the Compensation Plane theory, a fairly simple and accurate semi-analytical 
model have been derived for the determination of the restraint variation in early age 
concrete structures built by one young section cast on an older one. The expression is 
derived under the assumption of uniformly distributed elastic thermal deformation and 
shrinkage in each part, respectively. The expression depends on the geometric proper-
ties of the young and the old sections, the modulus of elasticity, the boundary restraint 
(both translational and rotational), a factor taking into account effects of possible slip 
failure in joints and finally on a factor for high wall effects. 

 The model has been calibrated to about 3000 three-dimensional elastic finite ele-
ment calculations with the introduction of the effective width of slab as the only model 
parameter, see Paper 2 by Nilsson et al. (2003). 

 Two simple and applicable expressions are developed from the general formulation 
of the model for the restraint determination in typical-case wall on slab. The first ex-
pression applies to structures in which plane sections remain plane, in which no slip 
failure takes place in the joint between the wall and the slab, and in which the bound-
ary restraint is zero. The second expression takes into account possible slip failure in the 
joint between the wall and the slab as well as high wall effects, that is, resilience. For 
other boundary restraint situations more sophisticated methods are necessary, see Paper 
2 by Nilsson et al. (2003). 
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7 LIST OF NOTATIONS, DEFINITIONS AND SYMBOLS 

Roman upper-case letters 

Aa,eff = effective cross-section area of the adjacent older concrete, [m2] 
Ac = cross-section area of the young concrete, [m2] 
Ba,eff = effective width of slab, [m] 
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Bc = width of wall, [m] 
Ea28 = 28 days modulus of elasticity of the old concrete, [MPa] 
Ec28 = 28 days modulus of elasticity of the young concrete, [MPa] 
Ha = height of slab, [m] 
Hc = height of wall, [m] 
Itrans,y = transformed second moment of inertia of the cross section for bending 

around the y-axis, [m4] 
Itrans,z = transformed second moment of inertia of the cross section for bending 

around the z-axis, [m4] 
L = length of the structure, [m] 
M = external flexural moment, [Nm] 
MRI,y = internal bending moment around the y-axis for obtaining zero curvature 

in the xz-plane of the young concrete, [Nm] 
MRI,z = internal bending moment around the z-axis for obtaining zero curvature 

in the xy-plane of the young concrete, [Nm] 
N = external axial force, [N] 
NRI = compression force giving zero translational strain in the young concrete, 

[N] 

Roman lower-case letters 

x = horizontal co-ordinate in the length direction, [m] 
y = vertical co-ordinate from the joint and up-wards, [m] 
y� = internal vertical lever arm to the total centroid for each part, [m] 
ycen = vertical location of the centroid of the transformed section relatively the 

joint, [m] 
z = horizontal co-ordinate from the centre of the slab, [m] 
z� = internal horizontal lever arm to the total centroid for each part, [m] 
zcen = horizontal location of the centroid of the transformed section relatively 

the centre of the slab, [m] 

Greek upper-case letters 

∆εa = strain of applied volume changes in the old concrete structure (shrinkage 
and temperature induced strain), [-] 

∆ε0
c = strain of applied volume changes in the young concrete (shrinkage and 

temperature induced strain), [-] 

Greek lower-case letters 

δres = high wall effect, resilience, [-] 
δ0

res = basic resilience factor, [-] 
δ0

transl = basic resilience correction factor for translational boundary restraint, [-] 
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δ0
rot = basic resilience correction factor for rotational boundary restraint, [-] 

δslip = slip in joint effect, [-] 
ε = strain, [-] 
εx

t = translational strain [-] 
εx

ry = rotational strain around the y-axis [-] 
εx

rz = rotational strain around the z-axis [-] 
φ = curvature, [m-1] 
φ0 = curvature at free rotation, [m-1] 
γR = restraint coefficient, [-] 
γR

ry = rotational restraint part for rotation around the y-axis (the vertical axis), [-] 
γR

rz = rotational restraint part for rotation around the z-axis (the horizontal, 
transverse axis), [-] 

γRR,y = rotational boundary restraint for bending around the y-axis, [-] 
γRR,z = rotational boundary restraint for bending around the z-axis, [-] 
γR

t = translational restraint part, [-] 
γRT = translational boundary restraint, [-] 
λ = factor describing the volume change in the old concrete relatively the vol-

ume change in the young concrete, λ = ∆εa
0/∆εc

0, [-] 
σ0 = stress at total fixation, [MPa] 
σ1 = principal stress at studied time, [MPa] 
ζ = factor describing the modulus of elasticity of the young concrete in rela-

tion to the 28-days modulus of elasticity, [-] 
ω = relative location of wall on slab, [-] 
ζEc28 = modulus of elasticity of the young concrete at the studied time, [N/m2] 
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APPENDIX A � DERIVATION OF RESTRAINT VARIATION IN WALL 
ON SLAB  

Below a derivation of a semi-analytical expression for the determination of the restraint 
factor γR follows as function of the geometric properties of the cross-section, of the 
modulus of elasticity, and the boundary restraint condition. In addition, a high wall fac-
tor δres (resilience) is introduced for non-linear strain variations in high-wall structures. 
Also a so-called slip failure factor δslip is used. 

A.1 Restraint 

Let us assume that the wall in Figure A.1 is exposed to a non-elastic strain, ∆εc
0. If 

every point of the cross section in Figure A.1 is totally restrained in the length direction 
(x-direction), and the deformations in the other directions (y- and z-directions) can 
take place without any restraint, the completely fixed stress in the x-direction is ex-
pressed by 

 0 0
28( )x c cEσ = ζ −∆ε  (A.1) 

Wall

y

zx

Slab

Joint 

Ground

y

xz

 

Figure A.1 Cross section of the structure to be studied in the derivation of the restraint γR. 

 For the actual situation, the stress in the x-direction, for instance determined by 
FEM calculations, is denoted σx. The restraint function for stresses in the x-direction is 
defined as the quota between the actual stress at the present time and the completely 
fixed stress according to Eq. (A.1), i.e. 

 
0
x

R
x

σ
γ =

σ
 (A.2) 

 Alternatively, the analysis can be split into 1) a boundary restrained situation and 2) 
an additional deformation part. The first part is established when one of the boundaries 
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in the x-direction in the xy-plane of the structure is completely restrained. The bound-
ary fixation stress function in the x-direction is then expressed as 

 0 0
28( )xb c res slip cEσ = ζ −δ δ ∆ε  (A.3) 

where 

ζEc28 = modulus of elasticity of the young concrete at the studied time [MPa] 
δres = high wall effect, resilience [-] 
δslip = slip in joint effect [-] 
∆εc

0 = strain of applied volume changes in the young concrete structure (shrink-
age and temperature induced strain) [-] 

 With the present boundary conditions in the xy-plane, the additional strain in the 
x-direction will be εx, and the total stress in the x-direction becomes 

 0 0
28 28 28x xb c x c res slip c c xE E Eσ = σ + ζ ε = −ζ δ δ ∆ε + ζ ε  (A.4) 

 The restraint factor for stresses in the x-direction is now described by putting Eq. 
(A.3) in Eq. (A.4) which in turn together with Eq. (A.1) are put in to Eq. (A.2) giving 

 
0

x
R res slip

c

ε
γ = δ δ −

∆ε
 (A.5) 

A.2 General model 

In accordance with the analysis method expressed by Eqs. (A.3) and (A.5), the addi-
tional strain in the length direction in any point of the cross section can be represented 
in the following way 

 t ry rz
x x x xε = ε + ε + ε  (A.6) 

where 

εx
t = translational strain [-] 

εx
ry = rotational strain around the y-axis [-] 

εx
rz = rotational strain around the z-axis [-] 

 Below, a semi-analytical model is being introduced by assumptions of non-linear 
functions with respect to deformations in the boundary fixation part (δres and δslip), and 
that plane section remains plane for the present boundary conditions with respect to 
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translation and rotations (εx
t, εx

ry and εx
rz, respectively). The model, see Figure A.2, is 

established on the following conditions 

1. The boundary fixation part is defined for fixation of the lower part of the 
wall, i.e. for y = 0. 

2. The effective area of the slab by adjustments of its width is introduced as the 
only free model parameter. 

This basic modelling has the following consequences 

- The first condition means that the boundary fixation functions (δres and δslip) 
depend only on the geometry of the wall. 

- The second condition is chosen to be the only fitting parameter to be able to 
give acceptable agreement with three-dimensional finite element method cal-
culations being performed. 
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Figure A.2 Basic properties used in the derivation of the restraint variation. 

 With the introduction of Eq. (A.6) and the simplifications in the model, the re-
straint factor, see Eq. (A.5), becomes 

 t ry rz
R res slip R R Rγ = δ δ − γ − γ − γ  (A.7) 

where the restraint factor is divided into one boundary fixation part (δresδslip), one trans-
lational part (γR

t = εx
t/∆εc

0) and two rotational parts (γR
ry = εx

ry/∆εc
0 and γR

rz = 
εx

rz/∆εc
0). 
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A.2.1 Translational restraint 

The axial strain is determined from the horizontal equilibrium condition. The sum of 
all forces on the vertical cross-section of the young concrete and the effective cross-
section of the older part is 
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∫
 (A.8) 

 The effective cross-section for the adjacent structural element is used because the 
real width of the slab is not always giving the right movements in plane-section analyses 
compared with elastic 3-dimensional finite element calculations, see Nilsson (2000) and 
Nilsson (2003). 

Further, the rotational strain is expressed as 
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ε = − φ
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 (A.9) 

 Let the volume changes in the older concrete be expressed as a factor λ times the 
volume change in the young concrete, ∆εa

0 = λ∆εc
0 which in Eq. (A.8) together with 

Eq. (A.9) gives 
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 The expression within the brackets in the first term defines the area of the trans-
formed cross-section 

 
,

28
,

28
c a eff

a
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ζ∫ ∫  (A.10) 

 The second and third terms vanish, as the first moments of area about the centroidal 
axis are zero. The position of the centroid is calculated as 
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 (A.12) 

 The fourth term defines the force for obtaining zero axial strain in the total structure 
expressed by 
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 Combining the expressions from equilibrium of axial forces gives the axial strain 
according to 
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N N
E A

−
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ζ
 (A.14) 

The axial force N is defined by a translational boundary restraint factor expressed by 

 RT
RI

N

N
γ =  (A.15) 

which gives 

 0(1 )t t
x RT xε = − γ ε  (A.16) 

where 
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 (A.17) 

Now, the translational restraint can be determined as, the second term in Eq. (A.7), 
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 (A.19) 

A.2.2 Rotational restraint 

The strain from the rotation of the structure is determined from the condition of flex-
ural moment equilibrium. The sums of all forces on the cross section of the young part 
and on the effective cross section of the old part times the lever arms to the total cen-
troid, respectively, are 
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that with Eqs. (A.4), (A.6) and (A.9) are 
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 Once again, the volume change in the old concrete is expressed as a factor λ times 
the volume change in the young concrete, ∆εa

0 = λ∆εc
0, which gives 
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 The expressions within the brackets in the first terms in each expression define the 
transformed second moments of inertia 
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 The second terms define the flexural moment for obtaining zero curvature in the 
total structure defined by 
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 Combining the expressions from the equilibriums of flexural moment gives the 
curvatures 
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 The external flexural moments My and Mz are defined by the rotational boundary 
restraint factors expressed as 
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Now, the rotational strain can be expressed as 

 0
,'(1 )ry

x RR y yzε = − − γ φ  (A.30) 

 0
,'(1 )rz

x RR z zyε = − − γ φ  (A.31) 
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With Eqs. (A.16) and (A.31) put into Eq. (A.6) the restraint factor is expressed by 
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The rotational parts of the restraint can now be determined as 
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and 
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 (A.34) 

A.3 Effects of high walls 

The high wall effects factor or the resilience factor is determined as 

 0
res res transl rotδ = δ δ δ  (A.35) 

where 

δ0
res = basic resilience factor, [-] 

δtransl = resilience correction factor for translational boundary restraint, [-] 
δrot = resilience correction factor for rotational boundary restraint, [-] 
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 The basic resilience factor referrers to structures with low length to height ratio, 
which are totally restrained at the base, see Figure 4. The resilience correction factors 
are introduced for cases in which the boundary restraint is not total. They are deter-
mined as 

 
( )

( )
0

0
,,

1

1
transl RT RT transl

RR zrot RR z rot

δ = γ + − γ δ

− γδ = γ + δ
 (A.36) 

where δ0
transl and δ0

rot are basic resilience correction factors for translation and rotation, 
respectively. See Nilsson et al. (2003) for more details on the determination of the basic 
resilience correction factors based on 3D elastic FEM calculations. Eq. (A.36) in Eq. 
(A.35) gives 

 ( )( ) ( )( )0 00
,, 11 RR zres res RR z rotRT RT transl − γδ = δ γ + δγ + − γ δ  (A.37) 

 For the case free translation and free rotation, that is no boundary restraint γRT = 
γRR,z = 0, Eq. (A.37) becomes 

 0 0 0
res res transl rotδ = δ δ δ  (A.38) 

 For no boundary restraint the 3D effect is considered only by introducing an effec-
tive width of the slab Ba,eff, which means that formally δ0

translδ
0
rot ≡ 1 in this case. So, 

the basic resilience correction factor for rotation is determined as the inverse of the ba-
sic resilience correction for translation by 

 0
0

1
rot

transl

δ =
δ

 (A.39) 

which in Eq. (A.38) gives that for γRT = γRR,z = 0 

 0
res resδ = δ  (A.40) 

A.4 Applicable formulations 

Below a derivation of the restraint factor γR for un-symmetrically located rectangular 
walls cast on rectangular slabs follows as function of the height of the wall Hc, the width 
of the wall Bc, the height of the slab Ha, the effective width of the slab Ba,eff, and the 
relative location of the wall on the slab ω as well as the modulus of elasticity of the 
young and the old parts, see Figure A.9. For the case of no boundary restraint that is 
γRT = γRR,y = γRR,z = 0, the solution of Eq. (A.32) is performed analytically. 



Restraint Factors and Partial Coefficients 

58 

 As been determined above, in Eq. (A.32), the restraint depends partly on the trans-
lational strain εx

t0, partly on the curvatures around the y� and z-axes, φy
0 and φz

0. The 
translational strain is determined according to Eq. (A.17) by the force obtaining zero 
axial strain in the total structure, NRI, by the modulus of elasticity of the young con-
crete, ζEc28, and by the area of the transformed cross section, Atrans. The curvature, in 
turn, is determined according to Eqs. (A.28) and (A.29) by the flexural moments ob-
taining zero curvature in the total structure, MRI,y and MRI,z, by the modulus of elastic-
ity of the young concrete, ζEc28, and by the second moments of inertia of the trans-
formed cross section, Itrans,y and Itrans,z. 
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Figure A.9 Cross sectional properties for a rectangular wall on a rectangular slab used in the 
derivation of the restraint γR. 

A.4.1 Translational restraint part 

By assuming no volume change in the old concrete, λ = 0, the force obtaining zero 
strain in the total structure is 
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 Now, let the high wall factor in Figure 4b), the basic resilience δ0
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where ai to an are coefficients that describe each curve in Figure 4b) above. Then 
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The area of the transformed cross section is 
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 (A.43) 

The translational restraint part is now calculated as, Eqs. (A.42) and (A.43) in Eq. 
(A.18) 
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A.4.2 Rotational restraint for bending around the y-axis 

By assuming no volume change in the old concrete, λ = 0, and no high wall effects 
(resilience), δres ≡ 1, for bending around the y-axis, the flexural moment for obtaining 
zero curvature in the total structure is, Eq. (A.22) 
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the expression is slightly simplified giving 
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 zcen is the distance to the centroid of the transformed cross-section relatively the 
centre of the slab (the chosen origin of the co-ordinate system, see Figure A.9), and it is 
calculated according to Eq. (A.12) as 
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With Atrans according to Eq. (A.43), this becomes 
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that in turn with Eq. (A.45) gives the final expression for the location of the centroid of 
the transformed cross-section 
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The transformed second moment of inertia Itrans,y is calculated from Eq. (A.21), giving 
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that with Eq. (A.45) is 
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 (A.48) 

 The rotational restraint part for bending around the y-axis can now be determined 
accordingly to Eq. (A.34) with Eqs. (A.46) and (A.48) giving 
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A.4.3 Rotational restraint for bending around the z-axis 

By assuming no volume change in the old concrete, λ = 0, and letting the high wall 
effect factor, δ0

res = δ0
res(y/Hc), be described with a polynomial, the flexural moment 

for obtaining zero curvature in the total structure is, Eq. (A.23) 
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 ycen is the distance to the centroid relatively the joint and it is calculated according to 
Eq. (A.11) as 
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The transformed second moment of inertia Itrans,z is calculated from Eq. (A.21), giving 
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The rotational restraint part can now be determined according to Eq. (A.34) 
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A.4.4 Final expressions 

It is now possible to determine a final expression for the restraint in any point above 
the joint in a early ages concrete wall on a older slab subjected to no boundary re-
straint. Eqs. (A.41), (A.44), (A.48) and (A.53) in Eq. (A.7) give a final applicable ex-
pression for the restraint in the mid-section of a wall-on-slab structure according to 
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 An even simpler expression is found for structures with no high walls effects and 
with no possible slip failure in the joint. Eq. (A.54) is then simplified by excluding δslip 
and δ0

res from the derivations of Eqs. (A.44), (A.49) and (A.53) giving 
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which exactly correspond with the Compensation Plane method according to the lin-
ear elastic theory. 
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ABSTRACT 

A special formulation of the semi-analytical method derived and presented in Nilsson et 
al. (2003) is in this paper developed for the typical case wall on slab. This special 
formulation is calibrated and adjusted by use of 2920 elastic three-dimensional finite 
element method calculations. Necessary adjustment tools are determined and presented 
in order to achieve good correlation with the FEM calculations. The adjustment tools 
consist of the effective width of slab, effects of relative location of walls on slabs, high 
wall effects, effects of possible slip failure in joints, and finally on the degree of bound-
ary restraint. 

 In a number of consecutive examples the need and use of the adjustment tools are 
presented. By use of the adjustment tools, good agreement is achieved between the re-
straint variation determined by the semi-analytical method and by the reference varia-
tion from the FEM calculations. By use of the adjustment tools the model is in its gen-
eral form applicable to any degree of boundary restraint, both translational and rota-
tional.  

Keywords: restraint; early age concrete; mass concrete; cracking; resilience; joint slip; 
wall on slab. 

1 INTRODUCTION 

The determination of the degree of restraint that a hydrating concrete element is sub-
jected to is of utmost importance for crack risk analyses of the young concrete. The de-
gree of restraint can be determined in different ways, e.g. by calculations or evaluation 
of measurements. 

 This paper is the second paper out of two presenting a semi-analytical method for 
the determination of restraint variations in early age concrete structures. In the first pa-
per, Paper 1 by Nilsson et al. (2003), the method was derived and all including parts 
and effects were described. The method is based on the Compensation Plane theory 
and should be seen as a fairly simple and straightforward engineering tool for restraint 
determination. A special formulation of the method is derived for the typical case wall 
on slab for which a number of adjustment tools are needed in order to achieve reliable 
restraint variations in walls for the typical case wall on slab structures. The necessary ad-
justment tools will be presented below, partly how they are derived and determined, 
partly how they are used. The presentation of the determination of the adjustment 
tools will be based on an example that will run through the whole paper in order to 
show the need and the result of each and every adjustment tool. 

1.1 The semi-analytical method 

The presentation in Nilsson et al. (2003) of the semi-analytical method contains only 
the derivation, the components and the basic principles of the method. No correlation 
or adjustments to any references of restraint variations are given. In order to assure the 
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method to correspond with the behaviour of real structures, a number of adjustments 
are necessary. The verification and adjustment of the method have been chosen to be 
done by elastic 3D FEM calculations of wall-on-slab structures. Exactly 2920 calcula-
tions have been performed, see Nilsson (2003), that hereby are chosen as references to 
the method. 

 The semi-analytical method in its general formulation is applicable to any early age 
concrete structure built by one young part cast on top of an older adjacent part, see 
Nilsson et al. (2003). For the typical case wall on slab with no volume change in the 
old part the general formulation reads 
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,
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 (1) 

where 

δres = high wall effect, resilience, [-] 
δslip = slip in joint effect, [-] 
Ac = cross-section area of the young concrete, [m2] 
Atrans = transformed cross-section area of the structure, [m2] 
Itrans,y = transformed second moment of inertia of the cross-section for bending 

around the y-axis, [m4] 
Itrans,z = transformed second moment of inertia of the cross-section for bending 

around the z-axis, [m4] 
γRT = translational boundary restraint, [-] 
γRR,y = rotational boundary restraint for bending around the y-axis, [-] 
γRR,z = rotational boundary restraint for bending around the z-axis, [-] 
ycen = vertical location of the centroid of the transformed cross-section relatively 

the joint, [m] 
y = vertical co-ordinate from the joint and up-wards, [m] 
zcen = horizontal location of the centroid of the transformed cross-section rela-

tively the centre of the slab, [m] 
z = horizontal co-ordinate from the centre of the slab, [m] 
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 The transformed cross-section properties as well as the location of the centroid are 
all calculated with the young concrete as the reference material, see Nilsson et al. 
(2003). 

 The high wall effect, resilience, is a correction factor for structures in which the 
strains do not vary linearly during the deformation, see Paper 1 by Nilsson et al. (2003) 
and below. For general cases subjected to some degree of boundary restraint, the resil-
ience factor is determined as 

 0
res res transl rotδ = δ δ δ  (2) 

with 

 ( )( )01transl RT RT translδ = γ + − γ δ  (3) 

 ( )( )0
,, 1 RR zrot RR z rot− γδ = γ + δ  (4) 

where 

δ0
res = basic resilience factor, [-] 

δ0
transl = basic resilience correction factor for translational boundary restraint, [-] 

δ0
rot = basic resilience correction factor for rotational boundary restraint, [-] 

which will be derived and more thoroughly described below. 

 In Nilsson et al. (2003) two simplified versions of the general semi-analytical 
method were presented for the typical case wall on slab, see Figure 1. The formulations 
assume rectangular cross-sections, horizontal joint between the wall and the slab, ho-
mogeneous and isotropic material in both parts and equal thermal contraction in the 
whole wall. 
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Figure 1 Cross-section proerties used in the semi-analytical method for typical case wall on slab. 

 The simplest expression does not use resilience and slip failure effects and is only 
applicable for structures not subjected to any boundary restraint. If the real width of 
slab is used and not the so-called effective width of slab that is introduced in Nilsson et 
al. (2003) and further explained and used below, the pure linear application of the 
semi-analytical method reads 
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 (5) 

where 

Ea28 = 28 days modulus of elasticity of the adjacent older concrete, [N/m2] 
ζEc28 = modulus of elasticity of the young concrete at the studied time, [N/m2] 
Aa = real cross-section area of adjacent older concrete, [m2] 
Hc = height of wall, [m] 
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Ha = height of slab, [m] 
Bc = width of wall, [m] 
Ba = real width of slab, [m] 
ω = relative location of wall on slab, see below, [-] 

 In Figure 2 an example of the restraint variation determined by Eq. (5) is shown for 
a 0.3m thick and 8m high wall located at the centre of a 1.4m high and 4m wide slab. 
The 28 days modulus of elasticity of the young and the old parts are set equal. Further, 
the maturity of the young concrete at the time of maximum crack risk is estimated by 
the factor ζ, which in this work has been given the value 0.93 according to Larson 
(2000). The figure 0.76 within the frame in Figure 2 marks a position one wall thick-
ness above the upper surface of the slab � a position that in many practical applications 
has turned out to be an approximate critical design position in the wall. 
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Figure 2 Example of restraint distribution determined by Eq. (5) with the effective width of the 
slab set equal to the real width. 

 Now one may ask oneself how well the restraint variation in Figure 2 corresponds 
with the real variations for the studied cross section and lengths. Calculations by Eq. (5) 
do not depend on the length of the structure. However, the length does influence. For 
short structures, or explicitly for structures with low length to height ratios, the strains 
over the height of the wall do not vary linearly, see Nilsson et al. (2003) and the subse-
quent chapter. Further, if the slab is very wide compared to the wall, not the whole 
width of the slab influences the contraction of the wall. Instead, only an effective width 
of the slab affects the behaviour of the wall. In order to justify and improve the method 
it clearly has to be compared to some reference restraint variations, and adjustment 
tools of different kind are needed. 
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2 REFERENCE RESTRAINT VARIATIONS 

2.1 Restraint variations determined by Finite Element Method 
calculations 

For the semi-analytical method presented in Nilsson et al. (2003) and further developed 
in this paper, finite element method (FEM) calculations have been chosen as a method 
of verifying and adjusting the method. Exactly 2920 elastic three-dimensional FEM cal-
culations of the restraint variation in walls on slabs have been performed. The majority 
of the calculations were produced within the Brite-Euram Project IPACS (Improved 
Production of Advanced Concrete Structures), and the rest of the calculations were 
performed within the development of the semi-analytical method, see below for de-
tailed description. 

 In all FEM calculations, the geometry of the structure has been varied as well as the 
rotational boundary restraint. The calculations were performed with the Dutch soft-
ware DIANA. In the calculations, the temperature within the walls was lowered uni-
formly and linear elastic calculations were performed. 

2.1.1 Input 
The geometry of the wall on slab cases has been varied according to the following. 
Three different widths, Ba, and three different heights, Ha, of the slab have been used as 
well as three different widths, Bc, and five different heights of the wall, Hc. Four differ-
ent lengths of the structure, L, and three different locations of the wall on the slab, ω, 
have been studied. Further, two different rotational boundary restraint situations have 
been regarded, γRR,z. All the parameters and their values are listed in Table 1. The co-
efficient ω describes the relative location of the wall on the slab. ω = 0 means that the 
wall is centrically located on the slab and ω = ±1 means the wall is located at one of the 
edges of the slab. 

Table 1 List of parameters and their values used in the Finite Element Method calculations of the 
elastic restraint variations in the walls of wall-on-slab structures. 

Parameter Values Num. of values

Ba [m] 2, 4, 8 3 

Ha [m] 0.4, 1, 1.4 3 

Bc [m] 0.3, 1, 1.8 3 

Hc [m] 0.5, 1, 2, 4, 8 5 
L [m] 3, 5, 10, 18 4 
γRR,z [-] 0, 1 2 
ω [-] 0, 0.5, 1 3 
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 In the calculations the modulus of elasticity of the slab was Ea28 = 30⋅109 N/m2 and 
of the wall ζEc28 = 27.9⋅109 N/m2. The Poisson�s ratio ν = 0.2, the density ρ = 2350 
kg/m3 and the thermal dilation coefficient of the wall α = 1⋅10-5°C-1. 

 Due to symmetry, only half of the length of the structures was studied. For the cases 
with the walls located at the centre of the slabs, only one fourth of the structures was 
studied due to the double symmetry. For all calculations two different rotational 
boundary restraint cases have been studied, viz. free rotation γRR,z = 0 and totally hin-
dered rotation γRR,z = 1, see Figure 3. 

 

a) b)  

Figure 3 Description of the constraints in the FEM calculations for the boundary conditions a) 
free rotation, γRR,z = 0, and b) totally hindered rotation, γRR,z = 1. 

 The calculations were performed using eight-node isoparametric solid brick 
elements based on linear interpolation and Gauß integration. In all calculations the 
walls were subjected to a uniform temperature decrease of 10°C. The imposed tem-
perature load was applied in each element as a momentary change of the temperature. 

The total number of possible calculations is 

 , 3 3 3 5 4 2 3 3240calc possiblen = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  

but for ω = 0.5 not all possible cases were calculated. Excluded were the cases with 1 
and 1.8 m wide walls on 2 m wide slabs as well as 1 and 1.8 m wide walls on 8 m wide 
and 0.4 m thick slabs. The number of excluded calculations is 

 ! ! ! ! ! ! !( 3 2 1 2 ) 5 4 2 320
c a c RRa c

excl
B H BH H L

n
γ

= ⋅ + ⋅ ⋅ ⋅ ⋅ =  

 

which gives the total number of calculations 



Paper B 

79 

 , , 3240 320 2920calc performed calc possible excln n n= − = − =  

2.1.2 Output 
From the FEM calculations, the variations of the strain in the nodes along the line of 
symmetry (middle of the walls of the structures), εx, εy and εz, were stored. These 
strains have been used to determine the restraint variation by calculating the ratio be-
tween the stresses in the longitudinal direction and the one-dimensional stress at total 
fixation of the applied temperature decrease according to 

 
( )28 28

0
28

1 1 21 2
c c

x y zz
zz

R
c

E E T

E T

ζ ζ α∆ν ε + ε + ε −ε + σ + ν − ν− ν γ = =
ζ α∆σ

 (6) 

 This formula implies that if no external strains are present (εx = εy = εz = 0) the re-
straint is exactly 1/(1-2ν) = 1.67. Normally the maximum amount of restraint is de-
fined being exactly 1, but with three-dimensional FEM calculations as reference to a 
method applicable for one-dimensional crack risk analyses the restraint may be larger 
than 1 depending on the Poisson�s ratio. 

 The values of the restraint determined by the FEM calculations have been plotted in 
diagrams as function of the relative distance above the joint between the walls and 
slabs, see Nilsson (2003). In each diagram, structures with the same cross-section but 
different lengths and rotational boundary restraint situations are presented. 

 In Figure 4 the restraint variation obtained by FEM calculations is shown for the 
wall on slab structure in Figure 2. In the figure only the restraint variations for the cases 
with no rotational boundary restraint γRR,z = 0 are shown. For γRR,z = 1, see Nilsson 
(2003). It is clearly seen that for the two shorter structures, L = 3 and 5 m, the high 
wall effects have great influence with non-linearly varying restraint due to the non-
linearly varying strain. On the opposite, in the longest structure the strain varies linearly 
implying that the Compensation Plane theory is valid. This is also shown by the close-
ness to the straight dotted line showing the restraint variation in Figure 2 determined 
by Eq. (5). 
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Figure 4 The restraint distribution in the shown wall determined by 3D elastic FEM calculations 
for the lengths L = 3, 5, 10 and 18 m, see Nilsson (2003). 

 From the results shown in Figure 4 it is clear that the need of some additional ad-
justment of the formulation in Eq. (5) is needed, especially for the structures exposed to 
high wall effects, the resilience. 

3 ADJUSTMENT TOOLS 

The application of the semi-analytical method needs, as been indicated above, a num-
ber of adjustment tools to obtain more correct restraint values for a wider range of 
structures. The determination of the adjustment tools will follow the same steps as they 
are used in restraint determination by the semi-analytical method. 

 The calculation of the restraint variation by the semi-analytical method is based on a 
number of consecutive steps, see Nilsson et al. (2003) for brief and general outline of 
the method. Firstly, the amount of boundary restraint has to be determined. Secondly, 
depending on the amount of boundary restraint, the resilience variation is determined 
by finding the basic resilience and basic resilience correction factors. Thirdly, the effec-
tive width of the slab has to be estimated. Finally, effects of possible slip failure at the 
joints between the walls and the slab are regarded. 

3.1 Effects of high walls 

As was shown in Figure 4 the restraint variation determined by Eq. (5) does not corre-
spond to the variations determined by FEM calculations. Adapting the so-called high 
wall effects or resilience factor is the first and most important correction. In Nilsson et 
al. (2003) the concept of resilience were thoroughly described. In this paper additional 
basic resilience curves will be presented that are needed for adjustment of the semi-
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analytical method to the reference restraint variations determined by the FEM calcula-
tions. 

3.1.1 Basic resilience 
In Nilsson et al. (2003) two different sets of basic resilience curves were presented, the 
first from ACI (1995) and the second from Emborg (1989). Below, the determination 
of four new resilience curves for base restrained walls for L/Hc = 0.25, 0.5 and L/Hc = 
10 and 40 are presented. The determination of new resilience curves has been per-
formed by elastic two-dimensional finite element method calculations by use of the 
Dutch software DIANA. 

 In the calculations a wall with the length L = 0.25, 0.5, 10 and 40m and the height 
Hc = 1m was used. The modulus of elasticity of the wall was ζEc28 = 22.5⋅109 Pa. The 
Poisson�s ratio was ν = 0.2, the density ρ = 2350 kg/m3 and the thermal dilation coef-
ficient α = 1⋅10-5°C-1. The calculations were performed using eight-node quadrilateral 
isoparametric plane stress elements, which is based on quadratic interpolation and Gauß 
integration. 

 Due to symmetry, only half of the lengths of the walls were studied. The base of the 
wall was totally restrained both for bending and for translation, that is γRT = γRR,z = 1, 
see Figure 5. In all calculations the walls were subjected to a temperature decrease of 
magnitude 10°C. The temperature load was applied in each element as a momentary 
change. 

 C L 

L/2=5m

H
c=

1m
 

 

Figure 5 Principle description of constraints in the FEM calculations for a wall with  L/Hc = 10 
and the boundary condition γRR,z = 1. 

 In the same way as for the FEM calculations of the restraint variation, the variations 
of the strain in the nodes along the line of symmetry (middle of the walls of the struc-
tures), εx, εy and εz, were stored. The strains in each node in the mid-section of the 
wall were then used to determine the restraint distribution. The determination is done 
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according to Eq. (6) giving the basic resilience curves shown in Figure 6 for L/Hc = 
0.25, 0.5, 10 and 40, which are marked with bolder lines. 

Martin 
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Figure 6 Completed basic resilience factor δ0
res, marked with bold lines, for L/Hc = 0.25, 0.5, 

10 and 40 as function of the relative distance above the joint. Existing curves, marked with thin 
lines, according to Emborg (1989). 

 For application purposes in the semi-analytical method the curves in Figure 6 can 
be described by polynomials of seventh order according to 
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with coefficients according to Table 2. 
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Table 2 Coefficients for polynomials describing the basic resilience curves in Figure 6. 

 Coefficients 
L/Hc a0 a1 a2 a3 a4 a5 a6 a7 

 0.25 1  -14.43  73.76  -167.6  152.5  19.93  -117.5  52.36 
 0.5 1  -5.961  7.786  12.14  -30.91  5.168  24.24  -13.46 
 1 1  -3.112  1.913  1.863  -1.746  0  0  0 
 1.2 1  -2.392  0.227  3.072  -2.038  0  0  0 
 1.4 1  -1.907  -0.362  2.700  -1.588  0  0  0 
 1.6 1  -1.690  -0.304  1.907  -1.062  0  0  0 
 2 1  -1.238  -0.541  1.158  -0.441  0  0  0 
 3 1  -0.912  -0.041  0.189  0.054  0  0  0 
 4 1  -0.641  0.131  0.026  0.063  0  0  0 
 5 1  -0.387  0.036  0.132  -0.031  0  0  0 
 6 1  -0.206  -0.197  0.455  -0.202  0  0  0 
 7 1  -0.185  0.222  -0.253  0.127  0  0  0 
 10 1  -0.019  0.007  0  0  0  0  0 
 40 1  0  0  0  0  0  0  0 

 

 With use of the resilience curves in Figure 6 expressed by polynomials according to 
Eq. (7) and solving Eq. (1) the following expression is given for determination of re-
straint distributions in structures with high wall effects and subjected to no boundary 
restraint γRT = γRR,y = γRR,z = 0, see Nilsson et al. (2003), 
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where i = 0, 1, � n = degree of the polynomial with coefficients ai � an. In this paper 
n = 7, see Table 2. 

 With the coefficients in Table 2 the restraint distributions for the structures in 
Figure 2 are calculated giving the results shown in Figure 7. Compared to the linear 
variation in Figure 2 the curves determined with Eq. (8) show a considerable im-
provement, i.e. a better agreement with expected real behaviour, achieved only by use 
of the resilience curves. However, there are still some differences between the curves 
obtained by Eq. (8) and by the FEM calculations, which are shown with thinner lines 
in the diagram in Figure 7. Further improvements are needed. 
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Figure 7 Restraint distribution by use of resilience determined according to Eq. (8) with 
coefficients from Table 2. 

3.2 Effective width of slab 

The restraint curves obtained with Eq. (8) and shown in Figure 7 give higher restraint 
values in the lower part of the wall than the curves from the FEM calculations. The 
lower part of the wall is of course the most interesting part regarding crack risk analy-
ses. In this particular, case this difference is on the safe side, but that may not always be 
the case. As been described in Nilsson et al. (2003) and mentioned above, the so-called 
effective width of the slab is introduced as a model parameter to adjust the semi-
analytical method to the reference restraint distributions from the FEM calculations. 

 Below, a description is presented of the determination of the effective width for the 
FEM-calculations with centrically located walls on slabs subjected to no boundary re-
straint. For other cases of boundary restraint, the so-called resilience correction factors 
δtransl and δrot are used, see Nilsson et al. (2003) and below. The values of the effective 
width are stored in a database, see Nilsson (2003), that is used to give values for the 
semi-analytical method for structures different from the ones in the FEM calculations. 
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3.2.1 Determination of effective width of slab 

The determination of the effective width of slab Ba,eff has been performed by varying 
the width of the slab in the semi-analytical method and comparing the restraint distri-
bution with the results from the FEM calculations. Using the least square method for 
the difference in the restraint values over the height of the wall is expressed by 

 ( )
n n

22
, , , ,

1 1

min ( ) min R FEM i R semi iR
i i= =

   
γ − γ∆γ =   

   
∑ ∑  (9) 

where i = 1, 2, � n = number of nodes in the FEM calculations. The values of the ef-
fective width of slab for all the different geometries in the FEM calculations, see above, 
have been gathered in groups of nine structures with the same real width of the slab, 
Ba, the same height of the wall, Hc, and the same length of the structure, L. The values 
in each group were then sorted by a parameter Χ calculated as 

 28 28

28 28
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0.93c c c c c c
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E A H E B H H B H

ζ
Χ = = =  (10) 

where 0.93 is the value of the 28-days value of the modulus of elasticity of the concrete 
in the wall, see above. The 28-days values of the modulus of elasticity in the walls and 
the slabs are set to be equal. 

3.2.2 Modelling of effective width of slab 

By plotting the obtained values of the effective width as a function of the parameter Χ, 
fairly clear relations for each group of nine values of the effective width have been 
found. In order to get applicable relations for the determination of the effective width 
when using the semi-analytical method, functions based on polynomials of fourth order 
according to 

 2 3
, 0 1 2 3a effB b b b b= + Χ + Χ + Χ  (11) 

have been established for the groups of nine values of the effective width. The estab-
lishment of the polynomials was done by use of regression analysis, where b0 � b3 are 
the coefficients for the polynomials, see below. 

3.2.3 Results 

In Nilsson (2003), the effective width as function of the parameter Χ is presented 
graphically. In the graphs, both the evaluated values of the effective width, and the cor-
responding values obtained by the polynomials for the same values of Χ, are plotted, 
see the example in Figure 8. In addition, the coefficients b0 � b3 of the polynomials for 
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each set of data are given together with the numerical values of the effective width be-
hind each graph. 

 The most values of the effective width have been possible to use in the determina-
tion of the polynomials, however, not all. Some of the values have been too far away 
from the rest of the values in the groups of nine. Therefore, these values have been ex-
cluded in the establishing of the polynomials. The reason for this might originate from 
the iteration procedure when determining the values of the effective width of slab. In 
some cases several values of the effective width of slab gave almost the same restraint 
variations and which of the values to choose have not been studied in detail within this 
work. 

 In Figure 8 an example is shown of the effective width as function of the parameter 
Χ for structures with 4 m wide slab, 8 m high wall and that are 5 m long. In the figure 
both the values from the evaluation of the FEM data are shown as well as the values 
from the established polynomial, Eq. (11). It is seen that there is a clear relation be-
tween the effective width of slab and the parameter Χ for this group of nine values. 
Similar relations are found for each and every set of values, see Nilsson (2003). 
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Figure 8 Example of the effective width to real width as function of the paprmeter Χ for Ba = 
4m, Hc = 8m and L = 5m. 

 As an example of results, the calculations of the effective widths from the FEM cal-
culations showed that for the actual structure, Ba,eff = 0.531, 0.532, 0.682 and 1.655 m 
for L = 3, 5, 10 and 18 m, respectively. With coefficients from Nilsson (2003) for the 
polynomial in Eq. (11) the effective width of slab is calculated giving Ba,eff = 0.523, 
0.590, 0.829 and 1.956 m for L = 3, 5, 10 and 18 m respectively. The differences be-
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tween these values are 1.6, 10.9, 21.6 and 18.2 %, which might seem large, but com-
pared to the real width of the slab this corresponds to 0.2, 1.5, 3.7 and 7.5 %, respec-
tively. With the introduction of the effective width of slab, Ba,eff, and corresponding 
effective area of slab, Aa,eff, Eq. (8) reads 
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that for the earlier studied example yields the restraint distributions depicted in the dia-
gram in Figure 9. Now the agreement with the reference curves from the FEM calcu-
lations is quite acceptable, especially for γR > 0 (= tensile stresses). 
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Figure 9 Restraint distributions determined with resilience curves and effective width of slab 
according to Eq. (12). 
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3.2.4 Walls not located at the centre of slabs 
For structures with walls not located at the centre of the slab, the same type of calcula-
tions as above have been carried trough with one additional adjustment of the effective 
width of the slab. In the determination of the effective width of slab, it was found that 
the values vary depending on the location of the walls on the slabs. In Nilsson (2003) 
the ratio between the effective width of slab for the un-symmetrically located walls, ω 
= 0.5 and 1, and the symmetrically located walls, ω = 0, of the same cross-section pa-
rameters have been determined as 

 ,

,

( 0)

( 0)
a eff

corr
a eff

B

B

ω ≠
ω =

ω =
 (13) 

 Then for un-symmetrically located walls on slabs the effective width of slab is de-
termined by these values of ωcorr that can be found in Nilsson (2003). Unfortunately, at 
present no simplifying relations for the determination of ωcorr have been found similar 
to what was established for the determination of the effective width of slab. 

 An example of the restraint variations from the FEM calculations and from the 
semi-analytical method determined with Eqs. (10) - (13) is shown in Figure 10. In this 
case ωcorr = 0.66, 0.67, 0.59 and 0.29 and consequently Ba,eff = 0.345, 0.394, 0.487 and 
0.563 m for L = 3, 5, 10 and 18 m, respectively. From comparison between Figure 9 
and Figure 10 it is evident that the rather small differences from the FEM calculations 
are quite similar in both cases. 
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Figure 10 Example of restraint distributions determined by Eq. (12) and ωcorr for a un-
symmetrically located wall on slab structure. 
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3.3 Boundary restraint 

The boundary restraint within this work is divided into a translational part γRT and two 
rotational parts γRR,y and γRR,z. The rotational boundary restraint against rotation 
around the y-axis is set to be zero, γRR,y = 0, as it is assumed that the torsion of the 
structure on the ground is not hindered at all. This is assumed to be an acceptable sim-
plification in cases where the subgrade consists of frictional/cohesive material like 
gravel, sand, clay, etc. The two other boundary restraint parts are coefficients that vary 
between 0 and 1 and can be determined according to different existing methods. 

 The rotational boundary restraint can be described by a modulus of subgrade reac-
tion, see below, and the translational boundary restraint by friction analysis. 

3.3.1 Rotational boundary restraint 
The rotational boundary restraint against bending around the z-axis, see Figure 1, can 
be determined by different methods, e.g. from expressions for beams on elastic founda-
tions valid for structures founded on elastic materials described by a modulus of com-
paction, see Bernander (1993) and Nilsson (1998 & 2000). In this case the rotational 
boundary restraint coefficient, γRR,z(x), at any point along a structure is expressed by 
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where Le is the so-called elastic length that is calculated as 

 28 ,
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where 

κ = a shape factor for the surface resting on the ground, see below, [-] 
Kj = modulus of compression, [N/m2] 

 The expression for the rotational boundary restraint generally originates from analy-
sis of deformations for beams on elastic foundation loaded by equal and opposite bend-
ing moments at the ends, see Timoshenko (1958) and Nilsson (2000). From Eq. (14) it 
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can be seen that the rotational boundary restraint only depends on the length to elastic 
length ratio, which makes the expression very applicable. In the mid-section of a struc-
ture, x = 0, which in almost all cases is the decisive section, Eq. (14) is simplified to 

 ,
2

1 cos sinh sin cosh
2 2 2 2sin sinh

RR z
e e e e

e e

L L L L
L L L L L L
L L

 
γ = − + 

 +
 (16) 

 Different types of soils give different resistance on compressive loading depending 
on the degree of compaction. Examples of the modulus of compression for different 
types of foundation materials at different degrees of compaction, like soft, semi-solid, 
dense, are given in Table 3. Higher degree of compaction leads to higher modulus of 
compression. 

Table 3 Modulus of compression, Kj, for different types of foundation materials, from Bernander 
(1993) and Nilsson (2000). 

Type of soil and compaction Kj [MN/m2]

Clay, soft  0.5 - 2 
Clay, semi-solid  1 - 3 
Clay, sandy and silty  2 - 5 
Sand, soft  3 - 10 
Sand, medium dense to dense  10 - 60 
Gravel, medium dense to dense  10 - 60 

 

 The shape factor κ in Eq. (15) can be determined according to for instance Löfling 
(1993) where it depends on the ratio between the width of the slab and the length of 
the slab, Ba/L, see Table 4. 

Table 4 The shape factor κ as function of the width to length ratio of the structure member resting 
on the ground, see Löfling (1993). 

Ba/L 0.2 0.4 0.6 0.8 1.0 

κ 0.94 0.83 0.75 0.69 0.65 
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 From Eq. (14) the length to elastic length ratio of structures that correspond to val-
ues of rotational boundary restraint between 0 and 100% have been calculated. The re-
sults depicted in Figure 11 for x = 0, ±0.1L, ±0.2L, ±0.3L and ±0.4L can be used to 
determine the rotational boundary restraint for a structure with given geometry that is 
founded on an elastic material with given modulus of compression. 
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Figure 11 The rotational boundary restraint coefficient γRR,z(x) as function of the length to elastic 
length ratio of the structure L/Le. Nilsson (2000). 

 For structures founded on rock or very stiff materials, it is also possible to estimate 
the rotational boundary restraint assuming no cohesion and/or friction between the 
concrete and sub-ground, Nilsson (2000). For such structures the ends tend to lift after 
the temperature maximum is reached and the cooling phase has started. Only the bend-
ing moment from the dead weight and the length of a structure counteracts the lifting. 
Further, by combining Eq. (14) for structures on elastic foundations with a formulation 
for structures on very stiff materials, cases of possible lifting ends of structures can also 
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be solved. In Nilsson (2000) this case is thoroughly studied and an explicit expression 
and a corresponding diagram are presented for determination of the rotational bound-
ary restraint. 

 The determination of the rotational boundary restraint coefficient as stated above is 
a quite straightforward method and rather simple by use of Eq. (14) and/or Figure 11. 
A general three-dimensional presentation of the rotational boundary restraint coeffi-
cient can be drawn from Figure 11 for structures with no lifting ends, see Nilsson 
(2000) and Figure 12. In the figure it can be seen that with higher length to elastic 
length ratio in combination with the proximity to the midsection of the structure, the 
higher the rotational restraint coefficient will be. 
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Figure 12 Three-dimensional presentation of the rotational boundary restraint coefficient, 
γRR,z(x), as function of the length to elastic length ratio, L/Le, and the distance from the 
midsection of the structure, x. Nilsson (2000). 

 The rotational boundary restraint can now be calculated for the example studied 
earlier. Assume that the slab is founded on dense gravel with modulus of compression 
Kj = 60 MN/m2 and that the modulus of elasticity of the wall ζEc28 = 27900 MN/m2. 
Further, the second moment of inertia of the cross-section Itrans,z = 51.7 m4, κ = 0.61, 
0.69, 0.83 and 0.93, respectively (by interpolation in Table 4). All these data used in 
Eq. (15) give the elastic lengths Le = 13.32, 13.75, 14.39 and 14.79 m for L = 3, 5, 10 
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and 18 m, respectively. The rotational boundary restraint coefficient is then calculated 
by Eq. (16) giving γRR,z = 2.7⋅10-5, 1.8⋅10-4, 2.4⋅10-3 and 2.2⋅10-2 for L = 3, 5, 10 and 
18 m, respectively. These values are very small and in this particular case the rotational 
boundary restraint coefficient can be neglected, i.e. γRR,z = 0 is a good approximation 
for the studied structure. 

3.3.2 Translational boundary restraint 
The translational boundary restraint coefficients can be determined by different meth-
ods, see e.g. Pettersson (1996 & 1998), Rostásy et al. (2001) and Bernander (2001). 

 In Rostásy et al. (2001) the three-layer method that assumes full interaction be-
tween a slab, a possible blinding and the ground is introduced. The model is derived 
under the assumption that plane sections remain plane, which involves very high de-
grees of boundary restraint. On the contrary, Bernander (2001) shows by basic and 
classic theory of elasticity that for the typical case wall on slab, the translational bound-
ary restraint in the mid-section can be neglected for reasonable long structures. Based 
on the findings according to Bernander (2001) γRT = 0 is chosen as a good approxima-
tion. 

3.4 Resilience correction 

In cases where the boundary restraint is not negligible, the high wall effects, the resil-
ience, depend, see Nilsson et al. (2003), on the degree of boundary restraint and is cal-
culated as 

 0
res res transl rotδ = δ δ δ  (17) 

with 

 ( ) 01transl RT RT translδ = γ + − γ δ  (18) 

 ( ) 0
,, 1 RR zrot RR z rot− γδ = γ + δ  (19) 

where 

δ0
res = basic resilience factor, see Figure 6[-] 

δ0
transl = basic resilience correction factor for translational boundary restraint, [-] 

δ0
rot = basic resilience correction factor for rotational boundary restraint, [-] 

 In cases with free translation and free rotation, i.e. γRT = γRR,z = 0, Eq. (17) be-
comes 
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 0 0 0
res res transl rotδ = δ δ δ  (20) 

 For no boundary restraint the 3D effect is considered only by introducing an effec-
tive width of the slab Ba,eff, which means that formally δ0

translδ
0
rot ≡ 1 in this case. So, 

the basic resilience correction factor for rotation is determined as the inverse of the ba-
sic resilience correction factor for translation by 

 0
0

1
rot

transl

δ =
δ

 (21) 

 This relation is used in the determination of the basic correction factor for bending 
for structures subjected to rotational boundary restraint, see below. 

 The last case rises at total boundary restraint, γRT = γRR,y = γRR,z = 1, that with Eq. 
(17) in Eq. (1) gives 

 0
R resγ = δ  (22) 

which exactly corresponds to the methodology in i.e. ACI (1995) for base restraint 
walls, see Figure 6. 

3.4.1 Determination of basic resilience correction for translational boundary restraint 
The determination of the basic resilience correction factors for translational boundary 
restraint has been done by evaluating the restraint distributions from the results of the 
FEM calculations with γRT = 0, γRR,z = 1 and δslip = 1, see Nilsson (2003). The high 
wall effects are calculated from Eq. (17) giving 

 0 0
res res transl

c c

y y

H H
   δ = δ δ   
   

 (23) 

where 0
res

c

y

H
 δ  
 

 is calculated by Eq. (7) with coefficients from Table 2. 0
transl

c

y

H
 δ  
 

 is 

then determined by application of Eq. (1) with γRT = 0, γRR,z = 1, δslip = 1 and Eq. 
(23) is transformed to 

 

0 0

0 0 c
res transl cA c c

R res transl
c c trans

y y
dA

H Hy y
H H A

   δ δ          γ = δ δ −   
   

∫
 (24) 
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 Thereafter, as the distribution of the restraint factor, γR,j, is known from the FEM 

calculations, the values of 0 j
transl

c

y

H

 
δ  

 
 can be established point-by-point (j = 1, �, n) 

using Eq. (24) expressed as 

 ,0

0 01
c

R jj
transl

jc
res res cA ctransc

y

yH y
dA

HAH

γ 
δ = 

     δ − δ   
  

∫
 (25) 

which by introducing Eq. (7) finally gives 

 ,0

7 7

0 0 1

R jj
transl i

c j c i
i

transci i

y

H y A a
a

A iH= =

γ 
δ = 

   
−  + 

∑ ∑
 (26) 

 For each set of restraint variations obtained in the FEM calculations with the rota-
tional boundary restraint γRR,z = 1, see chapter 2, the variations of δ0

transl are deter-
mined by use of Eq. (26). However, there is one limitation due to arisen mathemati-
cal/numerical problems when the denominator in Eq. (26) reaches zero and then 
change sign, which is the case for length to height ratios smaller than a certain value, 
usually between 2 and 3, see Figure 13 and Nilsson (2003) for the denominator below 
zero. This problem is also vaguely indicated in JCI (1992). 

 In Figure 13 the variation of the denominator of Eq. (26) is shown for six different 
values of the area ratio Ac/Atrans for structures with length to height ratio L/Hc = 3. It 
can be seen that with larger area ratios the denominator changes sign and consequently 
also δ0

transl changes sign, which makes Eq. (26) impossible to use, as δ0
transl reaches in-

finity. 
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Figure 13 The variation of the denominator of Eq. (26) for different values of the ratio Ac/Atrans 
for structures with L/Hc = 3. 

 In Figure 14 the variations of the basic resilience correction factor for translational 
boundary restraint are shown for the example in Figure 9 (wall at the centre of the 
slab). Due to the denominator in Eq. (26) passing zero, it can be seen that δ0

transl varies 
much between large negative and positive values for the length to height ratios L/Hc = 
0.375, 0.625 and 1.25, respectively. 

 Thus, in the shown example, L/Hc ≥ 2.25 is valid for the chosen basic technique 
�safely� using δ0

transl and δ0
rot according to Eq. (17). For the other structures, i.e. L/Hc 

< 2.25 in this example, the presented technique for determination of δ0
transl is not pos-

sible. This means that at present, very short structures cannot be analysed for γRT > 0. 
Note that as long as the restraint values obtained from the FEM calculations γR,j > 0 
the inverse of Eq. (26), δ0

rot = 1/δ0
transl, is still valid. Hereby, for somewhat shorter 

structures analyses for the case γRT = 0 and γRR,z ≠ 0 can be performed. 

 It is however here noted that, in practice, the need of analyses of very short struc-
tures for γRT > 0 and for γRR,z > 0 when γRT = 0, respectively, is not so large. Still, but 
from theoretical point of view it is interesting to establish some useful method for these 
short structures in the future. 
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Figure 14 Basic resilience correction factor δ0
transl for the structure in the example in Figure 9. 

The position where δ0
transl reaches infinity is marked, when it is valid. 

3.4.2 Resilience correction for rotational boundary restraint 
Once the resilience correction for translational boundary restraint is determined, the 
resilience correction for rotation can be obtained according to Eq. (21). Therefore, no 
data of the resilience correction for rotational boundary restraint have been established. 

3.5 Effects and slip failure in joints 

The effects of possible slip failure in joints are regarded by the factor δslip. In Nilsson 
(2000) the slip effects factor is presented as it is used in ConTeSt Pro (2003), see Figure 
15. The factor varies between the lower limits 0.5 and 1. Firstly, it depends on the free 
length of the casting section, and secondly on the height and width of the wall. The 
free length of the casting section is seen in the figure. 

 In Bernander (2001) a study by basic and classic theory of elasticity of the behaviour 
of joints between walls and slabs were performed. It was found that for fairly reasonable 
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data regarding material and geometry, the risk of slip failure in the ends of the joint be-
tween the walls and the slabs were most likely to occur. 
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Figure 15 Factor for possible slip in joint effects δslip as function of the free length of casting, the 
height of the wall and the width of the wall. ConTeSt Pro (2003) and Nilsson (2000). 
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 A slip failure in a joint between a wall and a slab does not have to be a brittle and 
fast occurrence. The �failure� might as well take place as a distributed softening of the 
young concrete adjacent to the joint, which means that no localized crack will be visi-
ble in the joint. However, the effect of the �failure� is a reduction of the stresses in the 
wall, reducing the risk of vertical cracking in the mid-section of the wall. 

 In Nilsson et al. (1999) and Nilsson (2000) three medium scale tests of wall on slab 
structures are presented. In these tests it was found that slip failure in the joints between 
the walls and the slabs took place. The propagation of the slip failures was measured 
with very brittle crack opening gauges that were glued across the ends of the joints. 
These recordings showed that the failure was brittle and that the cracks propagated in 
small distances, which in turn corresponded to the horizontal distances between the 
vertical reinforcement in the joints. 

3.6 General application 

By use of the adjustment tools presented above, fully shown in Nilsson (2003), applica-
tion of the semi-analytical method to any wall on slab structure is possible in the case of 
free boundary translation and free boundary rotation. 

 If the structure is subjected to some degree of boundary restraint, additional adjust-
ments are necessary. The basic resilience correction factors should be determined ac-
cording to sub-section 3.4. This means that structures with length to height ratios 
greater than a easily calculated limit can be directly analysed. For smaller values of 
length to height ratios, a method on the safe side is to analyse the structure as if the 
limit conditions were fulfilled. 

4 SUMMARY AND CONCLUSIONS 

In this paper the verification and application of the semi-analytical method derived and 
presented in Nilsson (2003) is shown and described. The verification is done by use of 
2920 elastic three-dimensional finite element method calculations as reference restraint 
distributions. The application needs a number of adjustment tools for fitting the re-
straint determined by the semi-analytical method to the reference restraint distributions. 

The adjustment of the semi-analytical method consists of 

­ a factor describing effects of high walls, so-called resilience 
­ effective width of slab 
­ a factor for effects of relative wall location on slab 
­ influence of boundary restraint 
­ correction of resilience due to boundary restraint 
­ factor taking into account slip failure in joint 
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 The first adjustment accounting for effects of non-linearly varying strains in high 
walls, the so-called resilience, which is based on a basic resilience factor that should be 
adjusted for structures subjected to some degree of boundary restraint. The second ad-
justment consists of the effective width of the slab, which is used together with the ba-
sic resilience to obtain the same restraint distributions as the reference distributions for 
cases subjected to no boundary restraint. The third adjustment changes the effective 
width of slab depending on the relative location of the wall on the slab. The fourth ad-
justment regards structures subjected to some degree of boundary restraint, which is 
used for correction of the resilience as the fifth adjustment. Finally, the method is ad-
justed for structures with slip failure in the joint between the wall and slab. 

 For the case of no boundary restraint, any wall on slab structure can fast and easily 
be calculated. These types of calculations cover most of the interesting cases in practical 
applications. For cases subjected to some degree of boundary restraint the actual appli-
cation of the concept of basic resilience correction factors works properly for length to 
height ratios larger than a certain, easy to calculate limit. For shorter lengths structures a 
method on the safe side is to analyse the structure as if the limit conditions were ful-
filled. 

 The calculation of restraint variations by the semi-analytical method is both simple 
and fast and by the adjustment to the three-dimensional finite element method calcula-
tions, the method gives reasonable accurate results. The calculations can be simplified 
in different steps, for instance by only using the resilience and slip failure factors as the 
adjustment tools. 

 Further, a comparison between restraint determinations by the semi-analytical 
method presented in this paper and by evaluations of field measurements on a full-scale 
structure is presented in Larson et al. (2003). 
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7 LIST OF NOTATIONS, DEFINITIONS AND SYMBOLS 

Roman upper-case letters 

Aa = real cross-section area of adjacent older concrete, [m2] 
Aa,eff = effective area of the old concrete, [-] 
Atrans = transformed area of the cross section, [m2] 
Ac = cross-section area of the young concrete, [m2] 
Ba = real width of slab, [m] 
Ba,eff = effective width of slab, [m] 
Bc = width of wall, [m] 
Ea28 = 28 days modulus of elasticity of the adjacent older concrete, [N/m2] 
Ha = height of slab, [m] 
Hc = height of wall, [m] 
Itrans,y = transformed second moment of inertia of the cross-section for bending 

around the y-axis, [m4] 
Itrans,z = transformed second moment of inertia of the cross-section for bending 

around the z-axis, [m4] 
Kj = modulus of compression, [N/m2] 
L = length of the structure, [m] 
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Le = elastic length, [m] 
T = temperature,[°C] 

Roman lower-case letters 

y = vertical co-ordinate from the joint and up-wards, [m] 
y� = co-ordinate from the total centroid and up-wards, [m] 
ycen = vertical location of the centroid of the transformed cross-section relatively 

the joint, [m] 
z = horizontal co-ordinate from the centre of the slab, [m] 
zcen = horizontal location of the centroid of the transformed cross-section rela-

tively the centre of the slab, [m] 

Greek upper case letters 

Χ = parameter for determination of effective width of slab, [-] 

Greek lower case letters 

α = thermal expansion coefficient, [°C-1] 
δres = high wall effect, resilience, [-] 
δ0

res = basic resilience factor, [-] 
δ0

transl = basic resilience correction factor for translational boundary restraint, [-] 
δ0

rot = basic resilience correction factor for rotational boundary restraint, [-] 
δslip = slip in joint effect, [-] 
ε = strain, [-] 
γR = restraint coefficient, [-] 
γRR,y = rotational boundary restraint for bending around the y-axis, [-] 
γRR,z = rotational boundary restraint for bending around the z-axis, [-] 
γRT = translational boundary restraint, [-] 
κ = shape factor for slabs, [-] 
ν = Poisson�s ratio, [-] 
ρ = density, [kg/m3] 
σ0 = stress at total fixation, [MPa] 
σ = stress at studied time, [MPa] 
ω = relative location of wall on slab, [-] 
ωcorr = correction of effective width of slab for relative location of walls on slabs, 

[-] 
ζEc28 = modulus of elasticity of the young concrete at the studied time, [N/m2] 
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ABSTRACT 

Modelling of restraint is one of the most important issues that has to be considered in 
thermal stress analyses enabling reliable thermal crack estimations that will contribute to 
an improved service life time and function of a concrete structure. 

It is shown that the complex structural restraint behaviour can be described by means 
of restraint coefficients giving an agreeing thermal stress development compared to 
both more exact Finite Element (FE) calculations and measured stresses in a full-scale 
structure. The restraint coefficients are in a stress calculation applied as a direct reduc-
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tion of the fixation stress during both the expansion and contraction phase of a harden-
ing concrete structural element. 

The structural restraint coefficients can be established by means of simple elastic ap-
proaches giving an acceptable accuracy compared to both more realistic viscoelastic ap-
proaches including models describing the hardening young concrete as well as the 
measured and observed restraint behaviour of a real full-scale structure. 

Keywords: restraint; early age concrete; mass concrete; cracking; resilience; joint slip; 
wall on slab. 

1 INTRODUCTION 

The service lifetime and function of a structure is often dependent on what happens 
during the very early ages of the hardening concrete. Cracking caused by restrained 
temperature and moisture deformations in the young concrete often leads to an early 
malfunction of the structure already in the constructional phase. Consequently, it is of 
great importance that reliable thermal stress estimations and thereby conclusions about 
cracking risks can be made before this premature damage has appeared. Modelling of 
the restraint to which a structural element is subjected is, if not the most, at least one of 
the most important issues that have to be considered in a thermal stress analysis, see 
Figure 1.1. If a hardening concrete structure may deform freely no stresses will appear 
and naturally no cracks either. A restrained structure will, on the other hand, rapidly 
experience both high compressive stresses as the concrete expands during the hydration 
process and high tensile stresses as it, due to the abating heat development, contracts. 
The stress development in the structure is during this period significantly influenced by 
the viscoelastic behaviour of the hardening concrete describing the alteration of the 
concrete from an almost liquid to a solid state. 

 Thermal stress estimations are often performed by means of special purpose Finite 
Element (FE) programs including models describing material properties of the young 
hardening concrete whereby it is possible to realistically consider the restraint situation 
in up to three-dimensions (3D). Full 3D-simulations are because of the complexity 
very time consuming (days) to execute, which in practice has lead to various simplified 
ways of working. Two- and three-dimensional effects are often treated with different 
engineering methods whereby the concept of using so-called restraint coefficients de-
scribed in i.e. ACI (1973), Harrison (1981), Emborg (1989), Kjellman and Olofsson 
(1999), Larson (2000), Nilsson (2000) or Olofsson et al. (2002) is one way of working. 
Using restraint coefficients is a very easy and efficient way of incorporating complicated 
structural restraint effects into a stress calculation. 
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Figure 1.1 Generalised temperature and stress development in a newly cast concrete element: a) 
temperature and b) stress development at varying end restraint. 

 The concept restraint coefficient is in this study defined as described in for example 
Larson (2000) by formulating the stress development in a specific point of a structure 
with 

 0( ) ( , ) ( ) ( )fix

t

t R t t d t tσ = ε + σ∫  (1.1) 

where 

 0
0( ) ( , ) ( )fix

t

t R t t d tσ = − ε∫  (1.2) 

and 

ε0(t) is the inelastic strain (the total free strain) at time t, [-] 
ε(t) is the external, measurable strain at time t, [-] 
σfix(t) is the fixation stress for ε(t) ≡ 0 at time t, [Pa] 
R(t,t0) is a relaxation function at time t for loading at the age t0, [Pa]  

 For a situation of total restraint the stress development will be exactly the same as 
the fixation stress i.e. ε(t) ≡ 0. This implies that the structural situation for a specific 
point of a general structure may be described by a restraint coefficient defined by 
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( )

( )
( )

R fix

t
t

t

σγ =
σ

 (1.3) 

where 

γR = 0 at no restraint ε(t) = ε0(t), and 
γR = 1 at no restraint ε(t) ≡ 0. 

 Usually the restraint coefficients are retrieved from an elastic stress analysis as de-
scribed in for example ACI (1973), Emborg (1989), Kjellman and Olofsson (1999), 
Larson (2000), Nilsson (2000) and Olofsson et al. (2002). How this simplified elastic 
approach influence the evaluated restraint compared to a viscoelastic approach includ-
ing properties of young concrete and how the restraint coefficients shall be applied in a 
thermal stress analysis has not yet been sufficiently clarified. Kanstad and Bosnjak (2001) 
have however shown that there is quite good correlation between thermal stresses cal-
culated with elastically obtained restraint coefficients and stresses calculated with a 
complete 3D FE-model including the behaviour of young concrete. Very few other 
studies exist. 

The aim of this paper is to: 

I. show that it is possible to evaluate the structural restraint by means of simple elastic 
approaches within acceptable limits compared to a more realistic viscoelastic ap-
proach and the �true� restraint behaviour of a real full scale structure. 

II. clarify how the application of restraint coefficients influence a calculated thermal 
stress development compared to both more exact FE-calculations and measured 
stresses. 

2 FULL SCALE FIELD TESTS 

The application of the elastic and viscoelastic restraint approaches is based on a full-
scale test whereby a wall is cast on an existing base slab founded on gravel with dimen-
sions according to Figure 2.1. The structure form a part of the Maridal culvert in Oslo, 
Norway, which has been instrumented for measurements of temperature and strain de-
velopment as reported in Heimdal et al. (2001) and Bosnjak (2000), see also Figure 2.1 
and Figure 2.2. The results from the performed field-test are partly used here to apply 
and compare different restraint approaches. 
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Figure 2.1 Dimensions in meters of the studied wall and foundation. Description of performed 
field-tests are given in Heimdal et al. (2001) and Bosnjak (2000). 

 The evaluation of restraint coefficients is performed for the mid-section of the stud-
ied structure where the cross-section may be considered as almost plane in respect of 
plane section theory. The measurements in this location have however to a large extent 
failed and the measured strains in position number 2, 5, 8 and 11 are therefore used in 
the empirical evaluation instead. 
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Figure 2.2 Location of instrumentation and positions for evaluation of restraint coefficients in the 
wall. 

3 EVALUATION OF RESTRAINT COEFFICIENTS  

3.1 Empirical evaluation of restraint 

3.1.1 Method 
The restraint is evaluated from the measured strain development together with a 
known maturity dependent creep and relaxation behaviour of the young hardening 
concrete whereby the restraint coefficient γR(t) based on Eqs. (1.1) to (1.3) is calculated 
as 
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( ) ( , ) ( )
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R fix

t

R t t d t R t t d t
t

t
t R t t d t

ε − ε
σγ = =

σ ε

∫ ∫

∫
 (3.1) 

 With Eq. (3.1) it is now possible to calculate the development of the restraint coef-
ficient from a measured strain ε(t) if the inelastic strain (the total free strain) ε0(t) and 
the maturity dependent relaxation function R(t,t0) are known. 

3.1.2 Temperature and maturity 
The temperature T has been registered in the locations according to Figure 2.2 and the 
results for position 2, 5, 8 and 11 are presented in Figure 3.1. The initial temperature 
corresponds to the registered temperature at the apparent setting time of the concrete ts 
= 10 hours equivalent time evaluated according to Hedlund (2000) for the concrete 
used at the Maridal culvert. The apparent setting time is regarded as the age when the 
concrete alters from an almost liquid to a solid phase, i.e. stresses can start to develop at 
10 hours equivalent time and further on, see for instance Hedlund (2000). 

 The maturity corresponds to the equivalent age te as if the hardening process had 
proceeded at a constant temperature of 20 °C according to 

 
0

t

e Tt dt= β∫  (3.2) 

 The temperature rate factor βT describes the difference in hydration rate depending 
on the temperature. As there seems to be a linear relationship between compressive 
strength and degree of hydration, Byfors (1980), the hydration rate may be exchanged 
by the compressive strength rate. This makes it much easier to perform tests for deter-
mination of βT, which can be described by the Arrhenius equation for thermal activa-
tion, see e.g. Freisleben Hansen and Pedersen (1977) and Byfors (1980). 

 
1 1

exp for > -10 °C
273

0 for -10 °C

T
ref

T

T T

  
 β = θ ⋅ −  +   

β = ≤

 (3.3) 

where 

T is the measured temperature, [°C] 
Tref is the chosen reference temperature (here 20 °C), [°C] 
θ is the "activation temperature", which formally can be described as the activa-

tion energy divided by the general gas constant according to Freisleben Han-
sen and Pedersen (1977), [K] 
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Figure 3.1 Measured temperature development in positions 2, 5, 8 and 11 according to Figure 
2.2. 

 The temperature dependency on the activation temperature can according to Jonas-
son (1984) be described as 

 
330

10ref T

κ
 θ = θ  + 

 (3.4) 
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in which θref and κ3 are parameters that are to be empirically defined. Parameters valid 
for the Maridal concrete are given in Appendix A. 

3.1.3 Inelastic strain 

The inelastic strain or the total free strain development ε0(t) originates in young con-
crete from a combination of thermal dilatation and autogenous shrinkage, which here is 
modelled according to Hedlund (2000) as 

 0( ) ( )h AD et T tε = α ∆ + ε  (3.5) 

where 

αh is the thermal dilatation coefficient, [ºC-1] 
∆T is temperature difference, [ºC] 

 The autogenous shrinkage εAD in Eq. (3.5), adjusted for the actual temperature by 
means of the factor βST during the heating and cooling phase of the young concrete, is 
according to Hedlund (2000) expressed as 

 ( ) ( ) ( )AD e ref e STt t Tε = ε β  (3.6) 

where 

εref is the reference ultimate shrinkage at isothermal conditions (T = 20 ºC), [-] 
βST(T) is temperature effect on autogenous shrinkage, [-] 
T is the highest temperature that has been reached so far, which in many cases 

corresponds to the temperature during the heating phase, [ºC] 

 The reference autogenous shrinkage εref can, as described in Hedlund (2000) with 
denotations according to Figure 3.2, be expressed as a function of equivalent age as 

 

1

1
1 1 2

2 1

1 2 2
2

0 for 

for 
( )

exp for 
SH

e s

e s
s s e s

s s
ref e

SH
s s e s

e s

t t

t t
t t t

t tt

t
t t

t t

κ

<
 −ε ≤ <
 −ε = 
     ε + ε − ≥   −  

 (3.7) 

in which tSH and κSH are model parameters. 
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Figure 3.2 Outline of typical autogenous shrinkage behaviour at early ages. 

 The increase of autogenous shrinkage due to temperature in Eq. (3.6) can according 
to Hedlund (2000) be considered by an empirical model expressed as 

 
1 2

0 1 2
1 2

( ) 1 exp 1 exp
b b

ST
T T

T a a a
T T

               β = + − − + − −                  
 (3.8) 

with following model parameters valid for a NSC (Normal Strength Concrete, water 
to binder ratio ≥ 0.40): 

a0 0.4 ºC  a2 1.3 - 

a1 0.6 -  T2 55 ºC 

T1 9 ºC  b2 7 - 

b1 2.9 -     

 Model parameters for Eqs. (3.5) to (3.8), describing the behaviour of the Maridal 
concrete, are presented in Appendix A giving a total free strain development ε0(t) for 
position 2, 5, 8 and 11 in the studied wall according to Figure 3.4, see also Hedlund 
(2000). 

 Recently, see Utsi (2003), the model description of the autogenous deformation, 
Eq. (3.6), has been completed with a late swelling. However, this particular concrete 
seems to be modelled accurately without this swelling, as the agreement between 
measured and calculated free strain is good in position 11, where the restraining is very 
low (γR ≈ 0), see Figure 3.4. 
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3.1.4 Measured strain 

The strain development ε(t) has been measured in defined points according to Figure 
2.2 and the results are presented in Heimdal et al. (2001) and Bosnjak (2000). Figure 
3.4 shows the measured strain in location 2, 5, 8 and 11 of the wall. All measured val-
ues have been zeroed at the apparent setting time of the concrete ts = 10 hours equiva-
lent age. 

 As can be seen in Figure 3.4 there is an instant drop in the measured strains after ap-
proximately 108 hours. A crack survey according to Figure 3.3 shows that a crack has 
appeared close to one of the measured sections whereby point 2 and 5 have registered 
the phenomenon. 

6.3m 4.2m 4.5m

Measured section
point 2, 5, 8 and 11 5.0m

 

Figure 3.3 Observed cracking in the studied wall, from Thomassen (1999). 

3.1.5 Differential (restrained) strain 

The difference between the total free strain and the measured strain ∆ε(t) = ε0(t)-ε(t) 
represents the restrained part of the deformation that will evolve stresses. As can be seen 
in Figure 3.4 the concrete reaches failure at a differential strain level of 0.18 � in posi-
tion 2, which very well correlates to the failure strain of concrete including creep ef-
fects for this type of loading, usually 0.14 to 0.2 �, see Hedlund (2000). The differen-
tial strain level in position 5, where failure also has been registered, is 0.15 �. 
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Figure 3.4 Development of inelastic strain, measured strain and differential (restrained) strain in 
position 2, 5, 8 and 11 of the wall. After approximately 108 hours there is an instant drop in 
the measured strains (position 2 and 5), which indicates that a crack arises in the wall at this 
moment. 

3.1.6 Relaxation function 

The relaxation function R(t,t0) may by means of a simplified method according to 
Trost (1967) be expressed from a known creep function ϕ(t,t0) as 
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 (3.9) 

where 

χ is known as the ageing coefficient (Limitations for the ageing coefficient are 0 
< χ ≤ 1.0), [-] 

∆tload is time after loading in equivalent time, [d] 
t0 is time of loading in equivalent time, [d] 

 The creep function ϕ(∆tload,t0) used in this study is derived from the so-called Linear 
Logarithmic Model presented by Larson and Jonasson (2003) as 

0 1 0 0 1
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E t a t t t t
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t t
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E t a t a t t t

t t

   ∆
∆ ≤ ∆ < ∆    ∆   ϕ ∆ = 

    ∆∆ + ∆ ≥ ∆      ∆ ∆   

 (3.10) 

in which ∆t1, a1(t0) and a2(t0) are model parameter and functions that are to be evalu-
ated from laboratory tests by means of regression. 

The functions a1(t0) and a2(t0) are expressed by 

 ( ) { }min max min 0
0( ) exp for 1,2

ain
s

i i i i
ai

t t
a t a a a i

t

  − = + − − =    
 (3.11) 

were index i = {1,2}, and ai
min, ai

max, tai and nai are model parameters that are to be 
evaluated from laboratory tests by means of regression.  

 Following parameters have according to Larson and Jonasson (2003) been found to 
be able to give a satisfactory description for a wide range of concrete mixes and may be 
used as general constants in the model: 

∆t0 0.001 d 

∆t1  0.1 d 

a1
min 0.1 10-12/(Pa log-unit) 

a1
max 60 10-12/(Pa log-unit) 

a2
max 30 10-12/(Pa log-unit) 

The development of the modulus of elasticity is modelled with 
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 0 0( ) ( )ref EE t E t= β  (3.12) 

in which Eref is the modulus of elasticity at 28 d of age and the relative development 
βE(t0) is expressed as 
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 (3.13) 

where tB, b1 and b2 are model parameters that are to be evaluated from laboratory tests 
by means of regression and ts is the apparent setting time of the concrete. 

 The model parameters in the creep function described by Eqs. (3.10) to (3.13) are 
evaluated from creep tests that have been performed at Technical University of Trond-
heim, Norway (NTNU), according to Bosnjak (2000) giving the model parameters 
presented in Appendix A and the compliance development shown in Figure 3.5 for the 
concrete used at the Maridal culvert. 
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Figure 3.5 Measured and calculated a) modulus of elasticity E(t0) and b) creep compliance J(t,t0). 
The creep is modelled by means of Eq. (3.10) to (3.13). 

 The creep may also be converted into relaxation by solving the function for the re-
laxation modulus R(t,t0) from a compliance function J(t,t0), which is used in the viscoe-
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lastic numerical evaluation of restraint in section 3.2. According to Ba�ant and Wu 
(1974) this may be performed by expressing the time t in discrete times t1, t2, t3, � tN 
yielding time steps ∆tj = tj � tj-1 and solving following equation 

 
( ) ( ) ( )

1

, 1/2 1, 1/2 1 ,0 1,0
, 1/2 2

1 j

j s j s j s j j
j j s

R R J J R J J
J

−

− − − −
− =

 −
∆ = ∆ ⋅ − + ∆ ⋅ − 

  
∑  (3.14) 

 The formulation has been implemented in a computer program called RELAX 
(Jonasson (1977) and a revised version by Westman and Jonasson (1999)) whereby 
creep data obtained from models or tests can be converted into relaxation. This is a 
more exact method for converting creep into relaxation than the simplified method ac-
cording to Eq. (3.9). Here the results from the RELAX program are used to find a 
representative mean value of the ageing coefficient χ, which by means of regression has 
been evaluated to 0.837. This can be compared to results from Trost (1967) who 
recommends 0.8 ≤ χ ≤ 0.9 for practical application. 

 Figure 3.6 shows the development of the relaxation for the Maridal concrete calcu-
lated with Eqs. (3.9) to (3.13) (χ = 0.837) and the RELAX program in which the 
compliance function J(t,t0) is expressed according to the Linear Logarithmic Model de-
scribed in Larson and Jonasson (2003). 
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Figure 3.6 Comparison between the developments of the relaxation modulus R(t,t0) obtained 
from a simplified model according to Eq. (3.9) (χ = 0.837) and by the more exact RELAX 
program given by Eq. (3.14). 

3.1.7 Restraint coefficients 

The restraint coefficient γR(t) can now be calculated according to Eq. (3.1) for the de-
fined locations in the studied wall. In section 3.5 �Comparison of restraint coefficients� 
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the calculated development of the restraint coefficient in position 2, 5, 8 and 11 are 
shown together with evaluated restraint coefficients according to different methods. 

 The representative restraint coefficient for the contraction phase is in the empirical 
evaluation defined as the restraint appearing at the time when the concrete reaches fail-
ure i.e. when the cracks arise after 108 hours. Location 2 and 5, which are located close 
to one of the observed cracks, are however influenced by the non-linear stress strain 
behaviour that appears as micro cracks starts to develop when the concrete is close to 
failure. This means that the measured restraint in these locations may be underestimated 
compared to the locations where no cracking has taken place. To what extent will be 
further analysed in section 3.5. 

3.2 Viscoelastic numerical evaluation of restraint 

3.2.1 Method 

The stress development σ(t) within the defined locations of the restrained wall and the 
fixation stress σfix(t) are calculated by means of the special purpose FE-program Con-
TeSt Pro (2003). A realistic structural restraint development can then be evaluated 
analogous to Eq. (3.1), which include the thermal deformations and the maturity de-
pendent viscoelastic behaviour of the concrete. 

 In the following, material models used in ConTeSt Pro (2003) and preconditions 
for the calculations are presented, see also Table 3.1. The material models have been 
fitted to material tests performed by Hedlund (2000) and Bosnjak (2000) describing the 
behaviour of the Maridal concrete. All model parameters are given in Appendix A. 

3.2.2 Finite element modelling 
For the temperature calculation, the studied structure of Maridal, wall and foundation, 
is modelled with two-dimensional (2D) 3-node elements. Stresses are analysed in the 
out of plane direction. Normally, the present length to height ratio of the structure 
(15/5.8 = 2.6) implies that plane section theory may not be valid, i.e. 2D analysis is ex-
pected not to be quite adequate. However, 3D elastic analysis of the actual structure, 
see Kanstad et al. (2001), shows that the restraint varies almost linearly, which means 
that plane section theory may yet be valid here as an application model. Further, the 
structure is founded on gravel with, according to Kanstad et al. (2001), modulus of 
compression Kj = 60 MN/m2. Together with the actual structure properties this value 
gives practically no rotational boundary restraint, see Nilsson (2000), which means that 
free rotation for the structure wall-on-slab may be assumed. Free translation in the out 
of plane direction is also assumed as well as perfect bond between the wall and founda-
tion. 

3.2.3 Heat conduction 
The heat transfer in an isotropic media under transient conditions is here modelled 
with a partial differential equation known as the heat conduction equation expressed by 



Restraint Factors and Partial Coefficients 

122 

 x y h
T T T

c k k Q
t x x y y

 ∂ ∂ ∂ ∂ ∂ ρ = + +  ∂ ∂ ∂ ∂ ∂   
 (3.15) 

where 

x, y are Cartesian coordinates when studying the cross-section, [m] 
T is temperature, [K] 
ρ is the density, [kg/m3] 
c is specific heat by weight, [J/kg K] 
kx, ky is thermal conductivity in x- and y-direction respectively, [W/m K] 
Qh is generated heat per unit volume and time, [W/m3] 

 Formally, the heat flow at the surfaces of the structure is described as a convective 
flow by 

 ( )n env
T

q h T T
n

∂= = −
∂

 (3.16) 

where 

qn is the heat flow from the structure normal to the boundary, [W/m2] 
h is the formal heat transfer coefficient, [W/m2 K] 
Tenv is the temperature of the environment, [K] 

 Following expressions are used to calculate the heat transfer coefficients for the 
boundaries of the studied cross-section (see also Table 3.1): 
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∑  (3.18) 

 The wind velocity v is assumed to be 5 m/s as long as the formwork is at place and 
thereafter 0 m/s due to the fact that scaffolding for the subsequent casting of the culvert 
top slab surrounds the studied wall rapidly after form removal. This gives following 
heat transfer coefficients for the different boundaries of the studied wall: 

• Free surface 0 m/s 
hfree = 5.6 W/m2K 

• Formwork on wall 5 m/s 
lform = 0.018 m, kform = 0.14 W/m K gives hform = 5 W/m2K 
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• Insulation on top of wall 5 m/s 
linsul = 0.01 m, kinsul = 0.036 W/m K gives hinsul = 3.2 W/m2K 

3.2.4 Maturity 
The maturity development expressed in equivalent age is described by Eq. (3.2) to (3.4) 
in section 3.1. 

3.2.5 Heat development 

According to i.e. Ekerfors (1995) and Jonasson (1994) the liberated rate of heat Qh(t) at 
a certain time t can be calculated from a known heat development under isothermal 
conditions W(te) as 

 e
h T

e e

tW W W
Q

t t t t

∂∂ ∂ ∂= = = β
∂ ∂ ∂ ∂

 (3.19) 

with 

 ref cemW B q=  (3.20) 

 ( )ref i i
i

B C k B= +∑  (3.21) 

where 

βT is defined in Eq. (3.3) 
te is defined in Eq. (3.2) 
Qh is generated heat per unit volume of concrete and time, [W/m3] 
W is the reaction heat of the concrete per unit weight of the reference binder, 

[J/kg] 
Bref is the reference binder content of the concrete, [kg/m3] 
ki is formal effective factor for binder number i, (-) 
qcem is the reaction heat per weight calculated with respect to the reference binder 

content, [J/kg] 
C is the Portland cement content of the concrete, [kg/m3] 
Bi is the additional binder content for binder component number i whereby Bi 

may for instance be addition of puzzolanic binders like silica fume, blast fur-
nace slag and fly ash, [kg/m3] 

3.2.6 Specific heat and thermal conductivity 
The specific heat c indicates how much energy that is required to raise the temperature 
in a defined amount of material to a certain level. Typical values of the specific heat for 
ordinary concrete compositions are within the range of 800 to 1200 J/kgK. 
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 The thermal conductivity k indicates the capability of the material to transmit heat. 
Typical values of the thermal conductivity are within the range of 1.6 to 2.5 W/mK. 

3.2.7 Thermal dilatation and shrinkage 
Deformations due to thermal dilation and shrinkage in the hardening concrete are 
modelled according to Eq. (3.5) to (3.8) in section 3.1. 

3.2.8 Creep and relaxation 
Relaxation is used in the thermal stress analysis, which has been retrieved by means of 
Eq. (3.14) from a known creep function given by Eqs. (3.10) to (3.13) in section 3.1. 

3.2.9 Non-linear stress-strain behaviour 
At high tensile stress levels (relative the tensile failure strength) the deformation of the 
concrete increases progressively with increasing stress i.e. non-linear behaviour is pre-
sent. This phenomenon is mainly related to the growth of micro-cracks. A stress analy-
sis that not considers the non-linear behaviour in tension will overestimate the tensile 
stresses. 

 Here, non-linear stress-strain behaviour at high tensile stresses (pre-peak behaviour) 
for loading in tension is modelled according to Jonasson (1994) and Hedlund (2000) 
whereby a virgin stress-strain curve is introduced according to Figure 3.7. Mathemati-
cally, this is written as: 

 
0

for m
ct

ct ctf f

εσ σ= ≤ α
ε

 (3.22) 

 ( ) 01 1 exp for 
1

m
ct

ct ct
ct ct ctf f

  ε  − α   εσ σ   = − − α − > α  − α  
 (3.23) 

where 

fct is tensile strength, [Pa] 
εm is material strain (strain related to the stress level), [-] 
αct is relative stress level above which non-liner stress-strain behaviour is present, 

[-] 
ε0 is fct/E, i.e. a fictitious strain linearly related to the tensile strength, [-] 

 Unloading, ∆σ < 0, is modelled by use of the elastic modulus at origin, which cor-
responds to inclination = 1 in Figure 3.7. 
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Figure 3.7 Non-linear stress-strain behaviour at tension according to Jonasson (1994) and 
Hedlund (2000). 

 The unrestrained movements are here expressed as stress induced deformations, Ba-
�ant and Chern (1985): 

 ( )0 1 signfree
T T T

ctf

 σ∆ε = ∆ε + ρ ∆ϕ 
 

 (3.24) 

 ( )0 1 signfree

ctfϕ ϕ ϕ
 σ∆ε = ∆ε + ρ ∆ϕ 
 

 (3.25) 

 

 

where 

∆εT
0 is nonelastic strain, including the stress-induced part, due to a change in tem-

perature, [-] 
∆εT

free is unrestrained and stress-free thermal strain due to thermal changes, [-] 
ρT is an adjustment factor for stress-induced thermal strain, [-] 

∆εϕ
0 is nonelastic strain, including the stress-induced part, due to a change in hu-

midity, [-] 
∆εϕ

free is unrestrained and stress-free moisture strain due to humidity changes, [-] 

ρϕ is an adjustment factor for stress-induced moisture strain, [-] 
∆ϕ is considered as change in relative pore humidity due to thermal and moisture 

changes, [-] 
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 The compressive strength development is expressed as described in Jonasson (1994) 
by using discrete values extracted from a given or measured strength development ac-
cording to following scheme: 

Equivalent age (te), 
[h] 

Part of compressive strength at the 
age of 28 days (fcc

28), [�] 
6 η1 
8 η2 
12 η3 
18 η4 
24 η5 
72 η6 
168 η7 

and thereafter applying piece-by-piece linear interpolation in logarithmic time scale. 
The tensile strength is then estimated in relation to the compressive strength as 

 
1

ref cc
ct t ref

c

f
f f

f

β
 

=   
 

 (3.26) 

where 

fct is tensile strength, [Pa] 
fcc is compressive strength, [Pa] 
ft

ref is reference tensile strength, [Pa] 
fc

ref is reference compressive strength, [Pa] 
β1 is a model parameter, [-] 
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Table 3.1 Preconditions for viscoelastic evaluation of restraint by means of the special purpose 
FE-program ConTeSt Pro (2003). Model parameters are given in Appendix A. 

Geometry: Mid-section in Figure 3.1 

Thermal  Heat conduction Eqs. (3.15) to (3.18) 
behaviour: Maturity Eqs. (3.2) to (3.4) 
 Heat development Eqs. (3.19) to (3.21) 

Mechanical  Thermal dilatation and shrinkage Eqs. (3.5) to (3.8) 
behaviour: Creep and relaxation Eqs. (3.10) to (3.14) 
 Non linear stress-strain behaviour Eqs. (3.22) to (3.26) 

Heat transfer  Free surface 5.6 [W/m2°C] 
coefficients: Insulation on top of wall 3.2 (0-24 h) 

5.6 (24- h) [W/m2°C] 

 I. Formwork on wall 
(form removal 24 h) 

5.3 (0-24 h) 
5.6 (24- h) [W/m2°C] 

 II. Formwork on wall 
(form removal 48 h) 

5.3 (0-48 h) 
5.6 (48- h) 

[W/m2°C] 

Temperatures: Initial temperature at casting 20 [°C] 
 Ambient temperature Figure 3.8 [°C] 

Casting: Filling rate 1 [m/h] 
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3.2.10 Calculated and measured temperature 
The ambient temperature was measured, and by connecting these measurements by 
straight lines the ambient temperature used in the calculations becomes a piece-by-
piece linear temperature development, see Figure 3.8. 
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Figure 3.8 Measured and applied ambient temperature. 

 The temperature development in the concrete has been calculated by means of the 
above given equations and model parameters according to Appendix A for the Maridal 
concrete giving the results presented in Figure 3.9. As can be seen there is a good cor-
relation between measured and calculated temperature in position 5 and 8 while 2 and 
11 show somewhat larger deviation. One possible explanation is that the real �local� 
concrete might differ somewhat in its properties, but the calculation is only done for 
one set of parameters. 
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Figure 3.9 Measured and calculated temperature in location 2, 5, 8 and 11. Calculations have 
been performed with the special purpose program ConTeSt Pro (2003). 

3.2.11 Restraint coefficients 

By means of the calculated stress development σ(t) and the fixation stress σfix(t) the re-
straint development can now be calculated as described by Eq. (3.1). Depending on 
weather the non-linear stress strain behaviour is considered or not the restraint has been 
evaluated as: 
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I. the non-linear stress strain behaviour at high tensile stress levels is considered in 
the thermal stress analysis giving the closest description of the actual behaviour 
of the studied culvert wall in which cracks have appeared. This however means 
that non-linear effects related to the high tensile stress level are included in the 
evaluated restraint coefficient. The representative restraint coefficient is in this 
evaluation case defined as the value appearing after 108 hours when cracks ac-
cording to the measurements arise in the wall. 

II. the non-linear stress strain behaviour is not considered in the analysis giving a 
restraint that is not dependent on the stress level and therefore gives a more 
general description of the structural restraint behaviour for an undamaged wall 
and thereby may be comparable to the elastic approaches. Here the representa-
tive restraint coefficient is defined at the time when the maximum stress arises 
in each studied position of the wall. 

The evaluated restraint development for the two above outlined cases in the mid-
section of the wall (position 3, 6, 9 and 12) is shown in Figure 3.12. The evaluated re-
straint coefficients are given in Table 3.2 and Figure 3.11. As can be seen the non-
linear stress strain behaviour significantly influences the evaluated restraint which will 
be underestimated compared to a linear analysis, see further section 3.5. 

3.3 Elastic numerical evaluation of restraint 

3.3.1 Method 
In an elastic approach the numerical analysis does not include the thermal and 
viscoelastic behaviour of the hardening concrete, which considerably simplifies and 
shortens the computations. Any general purpose FE-program can be used whereby the 
restrained structural element is subjected to an instant contraction, see for instance 
Kjellman and Olofsson (1999), Larson (2000) or Olofsson et al. (2002). The calculated 
stress in a specified location of the element is then compared to the stress that appears if 
the element is completely restrained whereby a restraint coefficient can be determined 
as 

 28

28

( , , )

( , )
c a c

R fix
c c

E E

E

σ ζ ε
γ =

σ ζ ε
 (3.27) 

where 

σ is the calculated stress from an elastic FE-analysis in the newly cast part of the 
structure, [Pa] 

σfix is the calculated stress in the newly cast part of the structure at total fixation, 
[Pa] 

εc is the contraction to which the newly cast structure is subjected, [-] 
Ea is the modulus of elasticity for the adjoining structure, [Pa] 
Ec28 is the modulus of elasticity for the young concrete structure at 28 days equiva-

lent age, [Pa] 
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ζ is a time factor describing development of the modulus of elasticity, [-] 

3.3.2 Finite element modelling 
The studied structure is modelled with elements and structural boundary conditions in 
ConTeSt Pro (2003) as described under section 3.2 above. 

3.3.3 Preconditions 
Following parameters are used in the analysis: 

• The modulus of elasticity for the adjoining structure Ea is 36.82 GPa 
• The modulus of elasticity for the young concrete structure at 28 days equivalent age 

Ec28 is 36.82 GPa 
• The time factor describing development of the modulus of elasticity ζ is 1.0. 

• The contraction to which the newly cast structure is subjected εc is described by 
αc∆T with αc = 10⋅10-6 °C-1 and ∆T = 10 °C, i.e. εc = 100⋅10-6. 

3.3.4 Restraint coefficients 
The evaluated restraint coefficients for the mid-section of the wall (position 3, 6, 9 and 
12) are given in Table 3.2 and Figure 3.11, see further section 3.5. 

3.4 Elastic analytical evaluation of restraint 

3.4.1 Method 

An elastic analytical expression to calculate the restraint coefficient γR has been derived 
by Nilsson (2000) under the assumption that plane sections remain plane and that the 
strains over the height of the structure vary linearly. This may, according to Nilsson 
(2000), be valid for structures with length to height ratios equal to or larger than ap-
proximately five. The expression has been further developed, Nilsson (2003a), for ef-
fects of possible slip failure in the joints between the wall and the slab, δslip, for effect of 
high wall structures (resilience), δres, and for un-symmetric structures. The restraint co-
efficient γR is separated into a translational part γt

R and two rotational parts γrx
R and γry

R 
according to 

 t rx ry
R slip res R R Rγ = δ δ − γ − γ − γ  (3.28) 

where 

δslip slip in joint effect, see Nilsson (2003a & b), [-] 
δres high wall effects, resilience, [-] 

 The high wall effects, resilience, are in Nilsson (2003a & b) determined by a basic 
resilience factor and two correction factors for structures subjected to some degree of 
boundary restraint. Normally, and in this paper, the boundary restraint is negligible, 
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which implies that the resilience is determined from the basic resilience according to 
Figure 3.10 
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Figure 3.10 Basic resilience factor δ0
res as function of the relative distance above the joint. Nilsson 

(2003b). 

 The curves describing the basic resilience are in Nilsson (2003a & b) described with 
polynomials according to 
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where a0 � an are the coefficients in the polynomials.  

 Further, the three additional restraint parts in Eq. (3.28), applied for a newly cast 
wall on existing slab like the Maridal culvert, are derived using the compensated line 
theory, supplemented for the high wall effects, and are calculated as 
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and 
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(3.32) 

where 

x, y are Cartesian coordinates in the studied cross-section, [m] 
Ea is the modulus of elasticity for the slab, [Pa] 
Ec28 is the modulus of elasticity for the young concrete wall at 28 days equivalent 

time, [Pa] 
ζ is a time factor describing the development of the modulus of elasticity, [-] 
Ba,eff is the effective width according to Nilsson (2003a & b) of the slab, [m] 
Ha is the height of the slab, [m] 
Bc is the width of the young concrete wall, [m] 
Hc is the height of the young concrete wall, [m] 
x is the horizontal distance from the centre of the slab, [m] 
xcen is the location of the centroid of the transformed cross-section relatively the 

centre of the slab, [m] 
y is the distance above the casting joint between the slab and the young con-

crete wall, [m] 
zcen is the location of the centroid of the transformed cross-section relatively the 

centre of the slab, [m] 
γRT translational boundary restraint [-] 
γRR,x rotational boundary restraint for bending around the x-axis [-] 
γRR,y rotational boundary restraint for bending around the y-axis [-] 
ω is the relative location of the wall on the slab. If ω = 0, the wall is located in 

the middle of the slab, if ω = ±1, the wall is located at one of the edges of the 
slab. 

 The location of the centroid of the transformed cross-section relative the joint be-
tween the wall and the slab and the centre of the slab is calculated from 
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 Calculations by Eq. (3.28) with Eqs. (3.29) to (3.33) are hereby denoted Elastic Ap-
proach Analytical II, see Table 3.2. 
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 If slip failure in the joint is not considered, if plane sections remain plane (no effects 
of high walls, or what is denoted resilience) and if no translational nor rotational 
boundary restraint is present, γRT = γRR,x = γRR,y = 0, the analytical expression for the 
determination of the restraint variation is simplified to, here denoted Elastic Approach 
Analytical I, 
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3.4.2 Restraint coefficients 
The restraint is calculated according to Eqs. (3.28) to (3.33) and by Eq. (3.34) whereby 
following parameters are used in the analysis, see also Figure 2.1 and Figure 2.2: 

28

a

c

E

E
 1.0 

ζ 1.0 

,a eff

c

B

B
 0.7427 

a

c

H

H
 0.1724 

y 0.5, 1.0, 2.5 and 5.0 m 
Hc 5.8 m 

 The evaluated restraint coefficients for the mid-section of the wall (position 3, 6, 9 
and 12) are given in Table 3.2 and Figure 3.11, see further sub-section 3.5. 

3.5 Comparison of restraint coefficients 

In this section all restraint coefficients determined by different methods described in 
sections 3.1 to 3.4 are collected and compared. The major result is that the empirical 
and viscoelastic numerical non-linear approaches give the best picture of the actual 
structural restraint behaviour of the studied wall while the viscoelastic numerical linear, 



Paper C 

135 

elastic numerical and elastic analytical approaches give a more general description of 
how an undamaged wall behave, see further below. 

 As can be seen in Figure 3.12 there is a large variation of the evaluated restraint 
close to the zero stress state, which is related to the division of small stress values in Eq. 
(3.1). An additional reason for the deviation of the measured restraint at early ages is 
that the strain gauges measure deformation in the reinforcement which does not have 
full contact with the, at this time, still plastic concrete. As the wall then starts to con-
tract the restraint develops from an initial high level down to a more or less constant 
value. In position 2 and 5 it can clearly be seen how the non-linear behaviour affects 
the restraint situations as the wall approaches failure. The non linear behaviour will in 
this specific case influence the restraint in position 2 in the order of approximately 14 % 
compared to a linear analysis at the time when the structure reaches failure (after 108 
hours). 

 The evaluated restraint coefficients are given in Table 3.2 and in Figure 3.11 they 
are presented as a function of the relation height over the foundation y to the height of 
the wall Hc. The overall correlation between the different approaches is very good but 
with some deviations that have to be further explained. 

 Although plane section theory is applied the restraint evaluated according to the 
viscoelastic approach does not give coefficients following a straight line from the 
bottom to the top of the wall. The largest deviation is at the lower part of the wall 
(position 2) where the major portion of the deviation arises due to the non-linear 
behaviour when the structure reaches failure. This location is however, as can be seen 
in Figure 3.9, also influenced by a lower temperature giving less thermal dilatation and 
a slower development of the E-modulus and creep that in turn will give a lower value 
of the restraint coefficient. In this study the deviation in restraint between the viscoelas-
tic and elastic approaches is comparatively small but in structures with large 
temperature differences the influence on the evaluated restraint coefficient may be 
significant. 
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Table 3.2 Representative restraint coefficients evaluated according to viscoelastic and elastic 
approaches with numerical and analytical methods compared to measured restraint after 108 hours 
when the wall reaches failure. 

Empirical 
approach Viscoelastic approach Elastic approach 

Analytical 

Method 
 
 

Loca-
tion 

Measured 
(After 108 h) 

Numerical 
I. Non-linear
(After 108 h)

Numerical 
II. Linear 
(At σmax) 

Numerical
I II 

2 0.604 - - - - - 
3 - 0.584 0.555 0.603 0.576 0.577 
5 0.482 - - - - - 
6 - 0.539 0.515 0.510 0.479 0.480 
8 0.385 - - - - - 
9 0.312 0.302 0.255 0.231 0.198 0.172 
11 -0.130 - - - - - 
12 - -0.241 -0.222 -0.234 -0.266 -0.226 
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Figure 3.11 Comparison of restraint coefficients in the mid-section of the wall evaluated with 
viscoelastic and elastic approaches presented as a function of the relation height over the foundation 
y to the height of the wall Hc. The measured restraint in point 2, 5, 8 and 11 is also given in the 
figure. 
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Figure 3.12 Measured and calculated (viscoelastic numerical approach) development of the 
restraint coefficient γR(t) according to Eq. (3.1). I. denotes that the non-linear stress strain 
behaviour at high tensile stresses has been considered and II. that it has not. Note that the 
positions of the measured (empirical approach) values are Nos. 2, 5, 8 and 11 while the 
viscoelastic approach is valid for positions Nos. 3, 6, 9 and 12. 
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4 THERMAL STRESSES 

4.1 Application of restraint coefficient in stress analysis 

The application of restraint coefficients in thermal stress analysis is as here shown in 
Eqs. (1.1) to (1.3), described by 

 σ σ( ) ( )fix
Rt t= γ  (4.1) 

where the fixation stress σfix(t), including the material behaviour of the hardening con-
crete described in section 3.2, can be calculated without knowing the structural behav-
iour of the actual structure that is to be analysed. The structural behaviour is considered 
by the restraint coefficient γR solely. 

 To clarify how the application of restraint coefficients influence a calculated thermal 
stress development following stress calculations are performed for the mid-section 
(position 3, 6, 9 and 11) of the studied wall where plane section theory may be 
assumed to be valid (see also Figure 4.1): 

• Measured The stress development is calculated from the measured strain 
development in position 2, 5, 8 and 11 as described in section 
3.1. 

• FEM non-linear The stress development is calculated by means of the special 
purpose Finite Element (FE) program ConTeSt Pro as de-
scribed in section 3.2 whereby the non-linear stress strain be-
haviour at high tensile stresses is considered. This calculation 
gives the closest description of the studied structure. 

• FEM linear As described under �FEM non-linear� but without consider-
ing the non-linear behaviour. This calculation is comparable 
to the concept of using restraint coefficients explained below.  

• Coefficient The stress development is calculated according to Eq. (4.1) 
from the fixation stress σfix(t) with the restraint coefficients 
obtained by the elastic analytical approach given in Table 3.2. 

 

4.1 Comparison of stresses 

4.1.1 Measured and FEM non-linear 
As can be seen in Figure 4.1 the correlation between the measured and calculated stress 
development is rather good. This means that the preconditions given in section 3.2 re-
garding structural behaviour and material modelling are good enough for description of 
this particular situation. 
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Figure 4.1 Calculated stress development by means of numerical FE-analysis and restraint 
coefficient evaluated by means of an elastic analytical approach compared to measured stresses in 
positions nearby. I. denotes that the non-linear stress strain behaviour at high tensile stresses has 
been considered and II. that it has not. 

 As also described in Hedlund (2000) it has been shown that it is possible to use re-
sults from individual tests of different material properties and put them together in a 
thermal stress calculation giving a satisfactory description of the stress development. 

 Regarding the structural boundary conditions it has here again been stated that a 
structure founded on soft ground, i.e. gravel, silt or clay, may be assumed to have free 
translation and free rotation. 

 The modelling of the non-linear stress-strain behaviour at high tensile stress levels 
seems to give an accurate description of the stress development when micro cracks start 
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to develop and the structure finally reaches failure. This behaviour can also clearly be 
recognized in the measured results from the field test at the positions where failure has 
been observed (position 2 and 5). 

4.1.2 FEM linear and Coefficient 
Using the concept of describing the structural behaviour by means of a restraint coeffi-
cient give, as shown in Figure 4.1, an acceptable picture of the stress development cal-
culated with numerical FEM. Here the most important issue is to confirm that the co-
efficient approach give reliable results and does not underestimate the maximum stress 
during the contraction phase as this is used as a design criterion in practical application. 
As can be seen this condition is satisfactorily fulfilled. 

5 CONCLUSIONS 

It is shown that it is possible to evaluate the structural restraint by means of simple elas-
tic approaches. Compared to a more realistic viscoelastic approach and the measured 
restraint behaviour of a real full scale structure the elastic approaches give consistent re-
sults. In structures with large temperature variations, however, there might be signifi-
cant deviations due to different development of the maturity dependent material prop-
erties. This has not been analysed here but should be set under further focus. 

 It can clearly be stated that the concept of using restraint coefficients in thermal 
stress analysis will work for practical application. The coefficient approach give reliable 
results and does not underestimate the maximum stress during the contraction phase. 
The non-linear stress strain behaviour at high tensile stresses has in this respect a less 
important role to play. This due to the fact that cracks shall be avoided and a correct 
description of the stress development should be obtained at stress levels when the rela-
tion between stress and strain still is more or less linear. 
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APPENDIX A MATERIAL PROPERTIES OF THE MARIDAL CON-
CRETE 

A.1 Thermal and mechanical properties 

In Table A.1 to A.4 parameter values for the models used in the empirical evaluation in 
section 3.1 and the viscoelastic numerical evaluation in section 3.2 (ConTeSt Pro pack-
age) are given. The results come from tests and material modelling given in Hedlund 
(2000) and Bosnjak (2000) and have in some cases been revised based on the results 
from the full-scale field tests. 

Table A.1 Some mix parameters of the tested Maridal concrete. w0 is the mixing water content, 
C is the cement content, B is the total binder content and SF is condensed silica fume content (B 
= C + SF). 

w0/C - 0.44 
Bw /0  w0/B - 0.42 

C (CEM I 52.5) kg/m3 347.8 to 354.8 
SF/C - 0.05 
Air % 3.5 to 4.8 

 

Table A.2 Thermal properties for the Maridal concrete. 

ρ kg/m3 2350 
c J/kg K 1100 (1000) * 
λ W/m K 2.2 (2.1) * 
Wc J/kg 335000 (355000) * 
C kg/m3 350 
λ1 - 1.15 

t1 h 9.5 

κ1 - 2.75 

∆te0 h 3 

βD - 1 

θref K 4400 

κ3 - 0 

ts h 10 

* Adjusted after comparison with results from field test. Original 
values are given within brackets. 
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Table A.3 Mechanical properties for the Maridal concrete. 

Poison ratio ν - 0.18 
∆t0 d 0.001 

∆t1  d 0.1 

a1
min 10-12/(Pa log-unit) 0.1 

a1
max 10-12/(Pa log-unit) 60 

a2
max 10-12/(Pa log-unit) 30 

a2
min 10-12/(Pa log-unit) 6.939 

ta1 d 0.01 

na1 - 0.198 

ta2 d 0.677 

na2 - 0.604 

Eref GPa 36.82 

tB d 1.212 

b1 1/(log-unit) 1.498 

b2 1/(log-unit) 0.224 

Creep and relaxation 

χ - 0.837 
fcc

28 MPa 76 

η1 (6 h) � 17 

η2 (8 h) � 25 

η3 (12 h) � 53 

η4 (18 h) � 155 

η5 (24 h) � 224 

η6 (72 h) � 560 

η7 (168 h) � 803 

ft
ref MPa 3.7 (3.35) * 

fc
ref MPa 73 

β1 - 0.667 

αCT - 0.8 (0.6) * 

ρT - - 

ρϕ - - 

Non linear stress 
strain behaviour 

kϕ - 2 (4) * 
* Adjusted after comparison with results from field test. Original values are given 
within brackets. 
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Table A.3 Continuation. 

αh 10-6/K 9.3 

θT K 5000 

εs1 - - 

ts1 d 0.167 

εs2 10-6 -150  

ts2 d 0.417 

tSH d 5 

Inelastic strain 

κSH - 0.3 
 

Table A.4 Relaxation values for the Maridal concrete adapted for the Maxwell-chain model used 
in ConTeSt Pro (2003). All parameters defined in description of the RELAX program, see 
Westman and Jonasson (1999). 

16   8   0.005   0.417 
 
0.416   0.517   0.759   1.114   1.635   2.4   3.522   5.17   7.589   11.138   16.349   
23.997   35.223   51.7   75.885   111.384 
 
0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01 
0.3932   0.1187   1.3153   1.5064   1.5295   1.0659   1.0584   -1.7825 
1.787   0.9   3.384   2.8237   3.1092   2.0874   2.1143   -1.6421 
3.4328   1.9287   5.1396   3.4756   4.0241   2.6328   2.7041   0.5983 
3.4116   1.9024   5.4611   3.4564   3.92   2.5665   2.6351   3.6849 
2.9417   1.692   5.4758   3.2672   3.6053   2.3648   2.4258   6.5906 
2.5103   1.4581   5.5665   3.1456   3.3669   2.2121   2.2674   9.1608 
2.1028   1.2017   5.8149   3.1145   3.2381   2.1269   2.1809   11.2309 
1.7169   0.9279   6.2626   3.1772   3.2221   2.1095   2.1675   12.7484 
1.3566   0.6475   6.892   3.3145   3.2934   2.1424   2.2097   13.7974 
1.0289   0.3737   7.6459   3.4914   3.4085   2.2042   2.2816   14.5427 
0.7406   0.1168   8.4661   3.6688   3.5357   2.2773   2.363   15.136 
0.4759   -0.1172   8.9394   3.7346   3.6233   2.3152   2.4121   15.4471 
0.2668   -0.3068   9.1224   3.7657   3.6566   2.3253   2.4281   15.5406 
0.1178   -0.4457   9.2556   3.789   3.682   2.3322   2.4395   15.6056 
0.015   -0.5434   9.3488   3.8055   3.7007   2.3367   2.4473   15.6496 
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ABSTRACT 

The aim of this work is to calculate partial coefficients for thermal cracking problems of 
young concrete and to compare the results with the values stated in the Swedish build-
ing code for bridges, [1]. The code values are only based on experiences and logical 
reasoning, whereas the calculated values form a more theoretical base for their determi-
nation. The coefficients are calculated with a probabilistic method. Various possible 
variations of the used variables have been studied showing the wide range of possible 
results depending on the input. However, with use of material properties and reason-
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able assumptions related to thermal cracking problems, fairly good agreement has been 
found between the stated values in the Swedish code [1] and the values obtained 
through the probabilistic method. 

 The calculated values are based on many assumptions and assumed values and 
should therefore not be seen as what is correct but rather more as an indication on the 
reasonableness of the values stated in the Swedish code. Further investigations, calcula-
tions and judgements must be performed before wider conclusions can be drawn. 

Keywords: Partial coefficients, Safety factors, Young concrete, Probabilistic method, 
Cracking 

1 INTRODUCTION 

A structure or a structural member should be designed in such a way that safety and 
serviceability are always maintained. This means that no relevant limit state conditions 
should be exceeded with an in beforehand-determined probability. For young concrete 
structures it is important to prevent surface and through cracks due to e.g. temperature 
and/or temperature gradients during the hydration phase. Such cracks do not affect the 
total bearing capacity of a structure, the safety, but can influence the aesthetics and 
cause leakage and durability problems, the serviceability, that must be taken care of by 
e.g. injection. 

 The risk of thermal cracking in young concrete structures is commonly estimated as 
the ratio between the calculated maximum tensile stress and the actual tensile strength. 
Alternatively, the ratio between the calculated maximum tensile strain and the actual 
ultimate tensile strain is used, which will be the case here. If a determined ratio is 
smaller than a so-called crack safety value, a structure is assumed to fulfil the require-
ments for avoiding thermal cracking. Depending on the effects of cracking and the 
accuracy in determining material properties, the Swedish building codes for bridges, 
[1], states different crack safety values as measures of the risk of cracking. 

 The risk of cracking due to temperature and temperature gradients can be estimated, 
according to [1], by three different methods. In Method 1 certain demands are specified 
on i.e. the casting and the air temperatures, the maximum cement content and the 
minimum value of the water cement ratio. Demands are also stated on the thickness 
and height of the structural members, the casting length, and when form stripping is 
allowed. In Method 2 and Method 3, which are more elaborate, certain values of the 
crack safety are prescribed depending on the accuracy in the determination of material 
data. Method 2 implies that requirements in a certain handbook, [2], should be applied. 
The requirements have been established by numerous thermal stress analyses. Further, 
material data that should be used are given in the code. In Method 3, the risk of crack-
ing is estimated very accurately with tried and documented computer software and 
material properties. 
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 The risk of cracking should not be larger than the partial coefficients given in Table 
1, the crack safety values according to [1]. The environmental classes in the legend of 
the first column are according to the Swedish building code for concrete, [3]. Envi-
ronmental class A2 stands for �Moderately reinforcement aggressive�, class A3 stands 
for �Very reinforcement aggressive� and class A4 stands for �Extremely reinforcement 
aggressive�, further see Section 4.2. 

Table 1 Partial coefficients - or crack safety values - for Method 2 and Method 3 given in [1]. 
For Method 2 values from the two right columns are used where C is the cement content [kg/m3]. 

 Method 3 Method 2 
Material data given in the code Environm. 

class 
Complete  

material data 360≤C≤430kg/m3 430≤C≤460kg/m3 

A2 1.11 1.25 1.42 

A3 1.18 1.33 1.54 

A4 1.25 1.42 1.67 

 

 The crack safety values can be referred to what usually are called partial coefficients 
based on probabilistic methods, see e.g. [4], [5], [6], [7] and [8]. A method for determi-
nation of partial coefficients will be presented here. Further, a determination of partial 
coefficients for thermal cracking problems, that is the crack safety values in [1], will 
follow as an attempt to indicate the reasonableness in the stated values. The method 
and the results are more thoroughly presented and described in [8]. The determination 
is based on material properties, assumptions on load situations and other conditions 
typical for thermal cracking problems. 

2 PARTIAL COEFFICIENTS 

2.1 Limit state function and safety index 

The safety against failure can be estimated by a limit state condition in terms of a resis-
tance parameter r and a stress parameter s. The limit state condition, Θ(⋅), can be ex-
pressed as the resistance parameter r reduced by the stress parameter s as 

 ( ) 0r sΘ ⋅ = − ≥  (1) 

 Usually, the resistance parameter r is the material strength and the load parameter s is 
the stresses caused by acting loads. Depending on their relative size, the limit state con-
dition is not exceeded if the resistance is larger than or equal to the stress, r ≥ s, and it is 
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exceeded if the resistance is smaller than the stress, r < s. 

 The two parameters are regarded as two normally distributed stochastic variables 
with given probability density functions, fr(r) and fs(s), see Figure 1a). From the pre-
sumption that the resistance parameter r and the stress parameter s are stochastic vari-
ables, the limit state condition is also a stochastic variable. Assuming the resistance pa-
rameter r and the stress parameter s being normally distributed also the limit state con-
dition Θ is normally distributed with the probability density function fΘ(Θ), Figure 1b). 

 

µs µr 
r,s

y 
y=fs(s) y=fr(r) 

a) 

µΘ 

fΘ(Θ) 

pf[Θ<0]

Θ=r-s 
0
βσΘ 

y=fΘ(Θ) 

b)

 

Figure 1 a) Probability density functions for the stress parameter, fs(s), and the resistance parame-

ter, fr(r), b) Probability density function for the limit state condition Θ, fΘ(Θ). 

 The probability of exceeding a limit state condition, pf[Θ = r-s < 0], is equal to the 
area of the shaded surface in Figure 1b). In the figure, the distance, with the standard 
deviation σΘ as unit, from the mean value µΘ to the failure limit, Θ = 0, is written as 
βσΘ. The coefficient β is the so-called safety index, introduced by Cornell in [9], and 
is, according to the figure, determined as 

 Θ

Θ

µ
β =

σ
 (2) 

 How much larger the resistance r should be than the stress s is often specified in 
building codes in different safety classes and through specified values of the safety index 
β. The safety index β is defined by a formal probability of failure, that is, of exceeding 
the limit sate condition. The safety index β is often coupled to safety classes in building 
codes, see e.g. [6], [7], [10]. If the risk of human injuries is low, often referred to safety 
class 1, the probability of failure is pf = 10-4 and the safety index β = 3.72. The same 
principle applies to safety classes 2 and 3, see Table 2. 
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Table 2 Correspondence between safety class, safety index and probability of failure, [1], [10]. 

Safety class 1 2 3 

Safety index β 3.72 4.26 4.75 
Probability of failure, pf 10-4 10-5 10-6 

 

2.2 Partial coefficients 

The partial coefficient method is based on characteristic values and partial coefficients 
for verification that prescribed safety requirements are fulfilled. Generally, for the limit 
state condition in Eq. (1), partial coefficients are used as follows 

 0c
d d s c

r

r
r s sΘ = − = − γ ≥

γ
 (3) 

where d indicates design values, c indicates characteristic values and γr and γs are the 
partial coefficients for the resistance parameter r and the stress parameter s, respectively. 

 For the risk of thermal cracking of young concrete, the partial coefficients in Table 
1 are the product of the partial coefficients for the resistance parameter r and the stress 
parameter s, γrγs, compare with Eq. (3), 

 c
r s

c

r

s
≥ γ γ  (4) 

In this case, all partial coefficients have been collected in one coefficient limiting the 
ratio between the resistance parameter and the load parameter. 

3 THE PROBABILISTIC METHOD 

3.1 Equations for determination of partial coefficients 

A method, further referred to as the probabilistic method, will be used to determine 
alternative values of the partial coefficients, safety values, for thermal cracking prob-
lems, given in Table 1. The method has the advantage of being consequent but it also 
includes many approximations. The results can therefore not be used directly without 
additional judgements. The following determination of the partial coefficients will be 
formulated in terms of strains. The procedure in general is based on a method pre-
sented by Lars Östlund in [11], reprinted in [12], and adopted on thermal cracking 
problems in [8]. As design condition with partial coefficients for thermal cracking prob-
lems, Eq. (4) will be used as the limit state condition. 
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 The resistance parameter r is defined as the product of a factor Cr describing uncer-
tainties in the calculation method, of a factor a for the geometric quantity, a factor ρ 
transferring concrete strain in a test specimen at failure to concrete strain in real struc-
tures, and a factor ε that is the ultimate strain, see APPENDIX A. 

 rr C a= ρε  (5) 

 The load parameter is defined as the product of a factor Cs describing uncertainties 
in the calculation method, a factor γR describing the restraint, see [8], and the sum of 
the thermal strain and the shrinkage induced strain, see APPENDIX A. 

 ( )s R T shs C b c= γ ε + ε  (6) 

where b and c are deterministic coefficients that are used when either the temperature 
induced strain is of greater importance than the shrinkage strain, or the opposite. 

By introducing 

 2 2 with coefficient of variation r
C Cr Cs

s

C
C V V V

C
= = +  (7) 

Eq. (5) and (6) in Eq. (1) give the limit state equation 

 ( ) ( )R T shCa b cΘ ⋅ = ρε − γ ε + ε  (8) 

 When calculating partial coefficients by the probabilistic method, the following 
design values are used for the stochastic variables r, εT and εsh. 

 exp( )d r r rr V= µ −α β  (9) 

 ( ), 1T d T T TVε = µ − α β  (10) 

 ( ), 1sh d sh sh shVε = µ − α β  (11) 

where αr, αT and αsh are so-called sensitivity coefficients determined as 

 
2 2 2 2

;    with ,   and i i
i

i r T sh

i r T sh
κ κ

α = = =
Σκ κ + κ + κ

 (12) 

which must fulfil the condition 
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 2 2 2 1r T shα + α + α =  (13) 

 The sensitivity coefficients take values between -1 and 1 and are positive for favour-
able factors, the resistance parameters, and negative for unfavourable, the load/stress 
parameters. The larger the coefficient is, the larger the importance of the uncertainty is 
in the corresponding variable. 

 In the calculation of the partial coefficients for thermal cracking problems of con-
crete, it is very difficult to give any absolute values of the mean values of the strains of 
shrinkage and temperature changes. However, the relation between them is simpler to 
estimate. Therefore, a coefficient νsh is introduced stating the ratio between the mean 
values of the strains of shrinkage and of the temperature change 

 sh
sh

T

c

b

µ
ν =

µ
 (14) 

Eqs. (9) to (11) and Eq. (14) in Eq. (8) give the design condition with design values of 
the variables 

 ( ) ( )exp( ) 1 1 0r
r r T T sh sh sh

R T

V V V
b

µ
−α β − − α β − ν − α β =

γ µ
 (15) 

By introducing the help variables 

 r

R T

Z
b

µ
=

γ µ
 

and 

 ( ) ( )1 1 1T T sh sh shV Vψ = − α β + ν − α β  

Eq. (15) can be re-written as 

 1 exp( )r rZ V= ψ α β  (16) 

 By introducing partial coefficients for the design values in Eqs. (9) through (11) one 
obtain 

 exp( )c r
d r r

r r

r
r kV

µ
= = −

γ γ
 (17) 
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 ( ) ( ), , (1 ) (1 )d s R T c sh c s R T T T sh sh shs b c b k V c k V= γ γ ε + ε = γ γ µ + + µ +  (18) 

where rc, εT,c and εsh,c are the characteristic values of the resistance parameter, the tem-
perature and the shrinkage induced strains, respectively. The limit state condition is 
then written as 

 ( )exp( ) (1 ) (1 ) 0r
r r s R T T T sh sh sh

r

kV b k V c k V
µ

− − γ γ µ + + µ + ≥
γ

 (19) 

 The coefficient k depends of actual fractile value for normal distribution variables, 
see Table 10 in APPENDIX A. In the same way as above, with Z = µr/bγRµT, νsh = 
cµsh/bµT and ψ2 = (1+kTVT)+νsh(1+kshVsh), Eq. (19) can be re-written as 

 
2 2

exp( ) c
s r r r

r

rZ Z
kVγ γ ≤ − =

ψ ψ µ
 (20) 

 By calculating Z, see APPENDIX A, and rc/µr by Eq. (A.4) with xi,c/µi = exp(-
αiβVi) = exp(-kiVi), the partial coefficient γrγs can be determined. 

 More thorough descriptions of the determination of the partial coefficients can be 
seen in APPENDIX A and references [8], [11] and [12]. 

3.2 Numerical values 

Varying the variables shown in Table 3 and keeping all others constant in the equations 
above, calculations of partial coefficients for thermal cracking problems of young con-
crete have been performed. 

 νsh is defined in Eq. (14) and states the ratio between the mean values of the strains 
of shrinkage and of the strains of temperature change. b and c are varied to simulate 
situations where one of the two strain components has smaller or larger influence. Es-
pecially in high strength concrete the shrinkage is considerable implying larger values of 
c. Vε is the coefficient of variation of the actual concrete (actual ultimate strain εcu). VC 
is the coefficient of variation of the methods used for estimating the risk of thermal 
cracking. Compare VC with Methods 1 to 3 in Section 1 where e.g. VC = 0.15 for 
Method 1, VC = 0.10 for Method 2 and VC = 0.05 for Method 3. These values are just 
an attempt to estimate the accuracy in the methods and should not be seen as what is 
correct. The safety index β is varied to coincide with safety classes 1 and 3 with prob-
abilities of failure of 10-4 and 10-6 respectively, see Table 2. 
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Table 3 Variables varied in the determination of partial coefficients for thermal cracking problems. 

Variable Values 

νsh 0.01
c

b
, 0.20

c

b
, 0.50

c

b
, 1.00

c

b
, 2.00

c

b
 

b 1/3, 1, 3 
c 1/3, 1, 3 

Vε 
0.05, 0.10, 0.15, 0.20, 0.25 

VC 
0.05, 0.10, 0.15, 0.20, 0.25 

β 3.72, 4.75 

 

 The coefficient of variation of the temperature induced strains is given the value VT 
= 0.08 according to [16]. The coefficient of variation of the shrinkage is given the 
value Vsh = 0.20. This value is a bit smaller than what can be determined from [17]. 
The values of kT and ksh are both 1.65 coinciding with 95 % fractile values of the tem-
perature and shrinkage induced strains, respectively, see Table 4. 

 The coefficients of variations of the geometry parameter Va and of the factor trans-

ferring strength in test specimens to real structures Vρ are both given the value 0, that is 

Va = 0 and Vρ = 0. The coefficient of variation of the geometry is assumed to be very 
low since in civil engineering structures, any divergences from the right measures do 
not significantly affect the risk of thermal cracking. For the concrete ultimate strain, 
45% fractile value is assumed giving kε = 0.13. The coefficient k is for normal distribu-
tion variables and can be found in general statistic textbooks, see Table 10 in APPEN-
DIX A. The value of the ultimate strain for the concrete is chosen slightly below the 
mean value bearing in mind that thermal cracking only causes flaws and costs for repair 
and reduction of the life of the structure but not total failure. For the accuracy in the 
design method C, for the geometry parameter a and for the factor transferring the ulti-
mate strain in test specimens to real structures ρ, the coefficient k is chosen kC = ka = 

kρ = 1.65 assuming 5% fractile values, see Table 4 below and Table 10 in APPENDIX 
A. 
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Table 4 Constant values for the resistance parameters C, a, ρ and ε and the load parameters εT 
and εsh used in the determination of the partial coefficients. 

kC Va ka Vρ kρ kε VT kT Vsh ksh 

1.65 0 1.65 0 1.65 0.13 0.08 1.65 0.20 1.65 

 

3.3 Calculation of partial coefficients 

3.3.1 Example of calculation of partial coefficients 
The following presumptions and values are used to illustrate the calculation of partial 
coefficients. Let the influence of the imposed volume changes be equal, b = c = 1. The 
mean value of the volume change due to shrinkage is one hundredth of the mean value 
of the imposed volume change due to the temperature change, νsh = 0.01⋅1/1 = 0.01. 
Further, the variation coefficients of the strength of the concrete and the calculation 
method are assumed to be five percent, Vε = VC = 0.05. The safety index β = 3.72 
refers to safety class 1. The following values for the resistance parameter, the sensitivity 
values α and the help values ψ, N and Z are obtained, Table 5 and Table 6. 

Table 5 Calculated values for the resistance parameter. 

Vr Cc/µC ac/µa ρc/µρ εc/µε rc/µr 

0.071 0.921 1.000 1.000 0.994 0.915 

 

Table 6 Calculated sensitivity values α and help-values ψ1, N and Z. 

α'sh αT ψ1 
N αϕ αT αr Z 

-0.017 -0.682 1.213 0.117 -0.017 -0.682 0.731 1.470 

 

The partial coefficient for this case is then calculated as, Eq. (20) 

 
2

1.470
0.915 1.174

(1 1.65 0.08) 0.01(1 1.65 0.20)
c

r s
r

rZγ γ = = =
ψ µ + ⋅ + + ⋅
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implying that the resistance parameter must be about 1.17 times larger than the load 
parameter for not exceeding the limit state condition. 

3.3.2 Final calculation of partial coefficients 
All the partial coefficients calculated with values according to the description and Table 
3 above are presented in Figure 2 to Figure 6 below. In all the diagrams, the curves 
from the lowest to the upper most one represent VC = 0.05, 0.10, 0.15, 0.20 and 0.25, 
respectively. See [8] for more descriptions of the calculations and the results. 

 In Figure 2 to Figure 6 it can be seen that with increased safety index β, the partial 
coefficient γrγs increases and is varying over a larger range depending on the values of 
VC. When the coefficient b increases also the partial coefficient increases, and when b 
decreases the partial coefficient decreases, compare Figure 3 and Figure 4 with Figure 
2. For the coefficient c, the opposite is valid. When c increases, the partial coefficient 
decreases and when c decreases, the partial coefficient increases, compare Figure 5 and 
Figure 6 with Figure 2. 

 b) β=4.75, b=1, c=1 a) β=3.72, b=1, c=1 

Vε 

γrγs 
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Figure 2 Partial coefficient γrγs for a) β=3.72, b=1 and c=1, b) β=4.75, b=1 and c=1. 

a) β=3.72, b=1/3, c=1 b) β=4.75, b=1/3, c=1 
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Figure 3 Partial coefficient γrγs for a) β=3.72, b=1/3 and c=1, b) β=4.75, b=1/3 and c=1. 
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a) β=3.72, b=3, c=1 b) β=4.75, b=3, c=1 
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Figure 4 Partial coefficient γrγs for a) β=3.72, b=3 and c=1, b) β=4.75, b=3 and c=1. 

 a) β=3.72, b=1, c=1/3 b) β=4.75, b=1, c=1/3 
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Figure 5 Partial coefficient γrγs for a) β=3.72, b=1 and c=1/3, b) β=4.75, b=1 and c=1/3. 

 a) β=3.72, b=1, c=3 b) β=4.75, b=1, c=3 
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Figure 6 Partial coefficient γrγs for a) β=3.72, b=1 and c=3, b) β=4.75, b=1 and c=3. 
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4 RESULTS 

4.1 Final values of partial coefficients 

Final values of the partial coefficient γrγs are determined from the previous calculations 

with b = c = 1, β = 3.72 and with coefficients of variation, VC = 0.05 and Vε = 0.05, 
0.10 and 0.15. The values are chosen to coincide with the first row in Table 1. For 
Method 3 (the column of complete material data) the models of analysis (computer 
software) are very well documented and tried and should give results not varying much 
from reality. Therefore, the coefficient of variation for the method of calculation is 
chosen to be small, VC = 0.05. For Method 2, (columns for material data given in [1]) 
lots of calculations and judgements are behind, [2], implying good accuracy of the 
analyses, again VC = 0.05. The differences in accuracy of material data are taken into 

account by varying the coefficient of variation of the material Vε as stated, Vε = 0.05, 
0.10 and 0.15. Again, kT = ksh = 1.65 for 95 % fractile values. Further, as an extension 
of the final determination of the partial coefficients, 55 % fractile values are assumed for 
the temperature and the shrinkage induced strains to coincide with the assumed fractile 
value of the ultimate strain (45 % fractile), see Section 3.2. For environmental class A2 
and Vε = 0.05, 0.10 and 0.15, the partial coefficient γrγs is taken as the values of the 
lowest curve in Figure 2a) presented in Table 7. 

Table 7 Partial coefficient γrγs from calculation with the probabilistic method for environmental 

class A2 and Vε = 0.05, 0.10 and 0.15. 

  Complete  Material data given in the code 
Environm. 

class 
kT, ksh 

material data
Vε=0.05 

360≤C≤430kg/m3

Vε=0.10 

430≤C≤460kg/m3 

Vε=0.15 

0.13 (55% fractile) 1.36 1.52 1.75 A2 
1.65 (95% fractile) 1.15 1.29 1.48 

 

4.2 Effects of exceeding the limit state condition 

The calculation of partial coefficients above is chosen to be valid for environmental 
class A2. The effects of exceeding the limit state condition (cracking) in a structural 
member are smaller in environmental class A2 than in classes A3 and A4. Therefore an 
extra partial coefficient γn is introduced. The values of the extra partial coefficient γn are 
chosen as the mean ratio between the values in the rows in Table 1, see Table 8. 
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Table 8 Partial coefficient γn depending on environmental classes. 

 Environmental class 
 A2 A3 A4 

γn 1.00 1.07 1.14 

 

 Final values of the partial coefficient γrγs are obtained from Table 7 with partial co-
efficient γn in Table 8, see Table 9. 

Table 9 Final values of partial coefficient γrγs as determined by probabilistic method. 

Environm.  Complete  Material data given in the code 
class kT, ksh 

material data 360≤C≤430kg/m3 430≤C≤460kg/m3 

0.13 (55% fractile) 1.36 1.52 1.75 
A2 1.65 (95% fractile) 1.15 1.29 1.48 

0.13 (55% fractile) 1.45 1.62 1.87 A3 
1.65 (95% fractile) 1.23 1.38 1.58 

0.13 (55% fractile) 1.56 1.74 2.00 A4 
1.65 (95% fractile) 1.32 1.48 1.70 

 

 A comparison with the values that are stated in [1] and the values of the partial coef-
ficients obtained by the probabilistic method are depicted in Figure 7. As can be seen, 
the values for kT = ksh = 1.65 (95 % fractile values) are little higher than the values 
given in [1]. The values show good agreement even though the uncertainties in the 
chosen values of the variables used in the probabilistic method are large and that the 
partial coefficients stated in [1] only are based on experiences. For kT = ksh = 0.13 (55 
% fractile values), the partial coefficients are much higher than the values in [1]. The 
reason for this is that with only 55 % fractile values of the temperature and the shrink-
age induced strains, the risk of exceeding these values is increased. This implies an in-
creased risk of exceeding the limit state condition, whereupon higher partial coeffi-
cients are needed. 
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Figure 7 Comparison between partial coefficients stated in [1] and partial coefficients obtained by 
the probabilistic method. 

5 DISCUSSION 

It is possible to calculate partial coefficients for thermal cracking problems of young 
concrete. The values presented above coincide well with the crack safety values stated 
in the Swedish building code for bridges, [1]. However, the calculated values of the 
partial coefficient are based on many assumptions and simplifications and they shall not 
be seen as what is absolutely true right, further judgements are always necessary. 

 The used coefficients of variation of the thermal changes and of the shrinkage need 
further investigation. The values are roughly taken from [16] and are only assumed 
values that have not been well verified. 

 The crack safety values in [1] are all based on experience, so also these values are a 
bit vague. The calculated partial coefficients presented here can be seen as an attempt to 
verify the values in [1]. However, all estimations of the risks of thermal cracking of 
young concrete have to be based on more judgements and analyses of the problems as a 
whole rather than on the crack safety values given in [1]. 

 The differences in the partial coefficient between the environmental classes need 
further investigations. The values that are stated in [1] are only based on logical argu-
ments by the persons who have written the code, meaning that higher environmental 
class needs higher partial coefficients. 
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APPENDIX A  

Below a derivation follows of equations used in the determination of partial coefficients 
for thermal cracking problems. 

A.1 Resistance parameter 

The resistance parameter r is expressed as, [11] 

 rr C a= ρε  (A.1) 

where Cr is a factor describing uncertainties in the calculation method on the resistance 
parameter such as determination of material properties. Cr is a stochastic variable with 
mean µCr and coefficient of variation VCr. a is a geometric quantity (e.g. cross-section 
area). a is a stochastic variable with mean µa and coefficient of variation Va. ρ is a factor 
transferring concrete strain from test specimen at failure to concrete strain in real struc-
tures. ρ is a stochastic variable with mean µρ and coefficient of variation Vρ. ε is the 
actual concrete ultimate strain. ε is a stochastic variable with mean µε and coefficient of 
variation Vε. The stochastic variables r, Cr, a, ρ and ε are assumed to be logarithmic 
normally distributed. 

The mean value of the resistance parameter is 

 r Cr a ρ εµ = µ µ µ µ  (A.2) 

and the coefficient of variation, if terms of higher order are neglected, 

 2 2 2 2
r Cr aV V V V Vρ ε≈ + + +  (A.3) 

Eq. (A.1) divided by Eq. (A.2) gives, if using characteristic values, 

 c rc c c c

r Cr a

r C a

ρ ε

ρ ε
=

µ µ µ µ µ
 (A.4) 

which will be used further on in the final calculation of the partial coefficients, see Eq. 
(A.21) below. 

A.2 Load parameter 

The load parameter s for thermal cracking problems can be formulated, in terms of 
strains, as 

 1 2( ( ) )s R T T shs C b c= γ ε + ε + ε  
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where Cs is uncertainties in the calculation method on the load parameter and is as-
sumed to have the same value for all the loads. Cs describes uncertainties in the deter-
mination of the strains by e.g. manual methods, see [13] and [14], or by finite element 
calculations, see [15]. Cs is a stochastic variable with mean µCs and coefficient of varia-
tion VCs. γR is the coefficient of restraint and is a deterministic coefficient, 0 ≤ γR ≤ 1. 
For further explanations and the determination of the coefficient of restraint, see [8]. 
εT1 is the non-elastic strain of volume changes from differences between the casting 
temperature and the adjacent temperature. εT2 is the non-elastic strain of volume 
changes from differences between the maximum temperature and the casting tempera-
ture. Below, the temperature-induced strains are combined into one parameter, εT, 
which is a stochastic variable with mean µT and coefficient of variation VT. εsh is the 
strain of volume changes from shrinkage and is a stochastic variable with mean µsh and 
coefficient of variation Vsh. b and c are both deterministic coefficients, 0 ≤ b and 0 ≤ c. 
The stochastic variables εT and εsh are assumed to be normally distributed. The deter-
ministic coefficients b and c are used when either the temperature-induced strain is of 
greater importance than the shrinkage strain, or the opposite. Now, the load parameter 
is 

 ( )s R T shs C b c= γ ε + ε  (A.5) 

The variables are put together so that the mean value of the stress parameter is 

 ( )s R T shb cµ = γ µ + µ  (A.6) 

By introducing the following relation 

 2 2;   r
C Cr Cs

s

C
C V V V

C
= = +  (A.7) 

the limit state condition, Eq. (1), is simplified to 

 ( ) ( )R T shCa b cΘ ⋅ = ρε − γ ε + ε  (A.8) 

 A coefficient νsh is introduced stating the ratio between the mean values of the 
strains of shrinkage and of the temperature change 

 sh
sh

T

c

b

µ
ν =

µ
 (A.9) 

A.3 Design condition 

When calculating partial coefficients by the probabilistic method, the following design 
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values and help values κ are used for the stochastic variables r, εT and εsh. 

 exp( )d r r r r d rr V r V= µ −α β κ =  (A.10) 

 ( ), 1T d T T T T R T TV b Vε = µ − α β κ = − γ µ  (A.11) 

 ( ), 1sh d sh sh sh sh R sh shV c Vε = µ − α β κ = − γ µ  (A.12) 

 When using design values in Eq. (3), the equal sign is valid, which together with 
Eq. (A.5) gives 

 , , 0d R T d R sh dr b c− γ ε − γ ε =  (A.13) 

In the expressions above, α are so-called sensitivity coefficients determined as 

 
2 2 2 2

;    with ,   and i i
i

i r T sh

i r T sh
κ κ

α = = =
Σκ κ + κ + κ

 (A.14) 

which must fulfil the condition 

 2 2 2 1r T shα + α + α =  (A.15) 

cµsh = νshbµT according to Eq. (A.9) and design values according to Eqs. (A.10) to 
(A.12) inserted in Eq. (A.13) give 

 ( ) ( )exp( ) 1 1 0r
r r T T sh sh sh

R T

V V V
b

µ
−α β − − α β − ν − α β =

γ µ
 (A.16) 

By introducing the help variables 

 r

R T

Z
b

µ
=

γ µ
 

and 

 ( ) ( )1 1 1T T sh sh shV Vψ = − α β + ν − α β  (A.17) 

Eq. (A.16) is simplified to 

 1exp( ) 0r rZ V−α β − ψ =  
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where from 

 1 exp( )r rZ V= ψ α β  (A.18) 

 Z can be determined if the values of αi (with i = r, T and sh), β, νsh, b, c and Vi are 
known. The steps for calculating Z can be as follows: 

(1) A value of α'sh is assumed 

(2) 
2

R T T T shT
T sh

R sh sh sh shi

b V V

c V V

′− γ µ ακ′ ′α = = α =
− γ µ νΣκ

 is calculated 

(3) ψ is calculated with Eq. (A.17), α'sh and α'T 

(4) 1
1exp( )d r r r r R Tr V b

Z
ψ= µ −α β = µ = γ µ ψ  and r d rr Vκ =  are calculated 

(5) ( ) ( ) ( )
2

2 22
1

i
T sh sh r

R T

N V V V
b

Σκ
= = + ν + ψ

γ µ
 

(6) 
2 2

sh R T sh sh sh sh
sh

i i

b V V

N

κ −γ µ ν −ν
α = = =

Σκ Σκ
 is calculated and compared to α'sh  

(7) When α'sh ≈ αsh, 
T

T
V

N

−α =  and 1 r
r

V

N

ψ
α =  are calculated 

(8) Check of Σαi
2 = 1 

(9) Z is calculated by Eq. (A.18). 

The value of Z is used below in the calculation of the partial coefficients. 

A.4 Partial coefficients 

The design values in Eqs. (A.10) through (A.12) can alternatively be expressed with 
partial coefficients as 

 exp( )c r
d r r

r r

r
r kV

µ
= = −

γ γ
 (A.19) 

 ( ) ( ), , (1 ) (1 )d s R T c sh c s R T T T sh sh shs b c b k V c k V= γ γ ε + ε = γ γ µ + + µ +  (A.20) 

which in the limit state condition, Eq. (3), give 

 ( )exp( ) (1 ) (1 ) 0r
r r s R T T T sh sh sh

r

kV b k V c k V
µ

− − γ γ µ + + µ + ≥
γ

 

 With Z = µr/bγRµT, νsh = cµsh/bµT and ψ2 = (1+kTVT)+νsh(1+kshVsh) it can be re-
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written as 

 
2 2

exp( ) c
s r r r

r

rZ Z
kVγ γ ≤ − =

ψ ψ µ
 (A.21) 

giving the partial coefficients γrγs. Z is calculated according to Section A.3 and rc/µr is 
calculated from Eq. (A.4) with xi,c/µi = exp(-αiβVi) = exp(-kiVi). ki depends on actual 
fractile value, which for normally distributed functions can be found in any table for 
the normal distribution, see Table 10 below. 

Table 10 Coefficient k as function of fractile for normal distribution. 

Fractile 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

k 1.65 1.28 1.04 0.84 0.67 0.52 0.39 0.25 0.13 
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